好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

pyecharts实现数据可视化

1.概述

pyecharts 是百度开源的,适用于数据可视化的工具,配置灵活,展示图表相对美观,顺滑。

2.安装

python3环境下的安装:

pip3 install pyecharts

3.数据可视化代码

3.1 柱状图

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker
?
c = (
? ? Bar()
? ? .add_xaxis(Faker.choose())
? ? .add_yaxis("商家A", Faker.values(), stack="stack1")
? ? .add_yaxis("商家B", Faker.values(), stack="stack1")
? ? .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
? ? .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(全部)"))
? ? .render("bar_stack0.html")
)

执行上述代码,会在相对目录生成 mycharts.html 文件,通过页面打开。

3.2 折线图

import pyecharts.options as opts
from pyecharts.charts import Line
?
"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://echarts.apache.org/examples/editor.html?c=line-smooth
目前无法实现的功能:
暂无
"""
?
?
x_data = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
y_data = [820, 932, 901, 934, 1290, 1330, 1320]
?
?
(
? ? Line()
? ? .set_global_opts(
? ? ? ? tooltip_opts=opts.TooltipOpts(is_show=False),
? ? ? ? xaxis_opts=opts.AxisOpts(type_="category"),
? ? ? ? yaxis_opts=opts.AxisOpts(
? ? ? ? ? ? type_="value",
? ? ? ? ? ? axistick_opts=opts.AxisTickOpts(is_show=True),
? ? ? ? ? ? splitline_opts=opts.SplitLineOpts(is_show=True),
? ? ? ? ),
? ? )
? ? .add_xaxis(xaxis_data=x_data)
? ? .add_yaxis(
? ? ? ? series_name="",
? ? ? ? y_axis=y_data,
? ? ? ? symbol="emptyCircle",
? ? ? ? is_symbol_show=True,
? ? ? ? is_smooth=True,
? ? ? ? label_opts=opts.LabelOpts(is_show=False),
? ? )
? ? .render("smoothed_line_chart.html")
)

3.3 饼图

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
?
c = (
? ? Pie()
? ? .add(
? ? ? ? "",
? ? ? ? [list(z) for z in zip(Faker.choose(), Faker.values())],
? ? ? ? radius=["40%", "75%"],
? ? )
? ? .set_global_opts(
? ? ? ? title_opts=opts.TitleOpts(title="Pie-Radius"),
? ? ? ? legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
? ? )
? ? .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
? ? .render("pie_radius.html")
)

到此这篇关于pyecharts实现数据可视化的文章就介绍到这了,更多相关pyecharts数据可视化内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

查看更多关于pyecharts实现数据可视化的详细内容...

  阅读:33次