mysql多表查询一般用交叉连接、内连接和外连接。交叉连接返回连接表的笛卡尔积;内连接是组合两个表中的记录,返回关联字段相符的记录,即返回两个表的交集部分;外连接会先将连接的表分为基表和参考表,再以基表为依据返回满足和不满足条件的记录。
(推荐教程:mysql视频教程)
在关系型数据库中,表与表之间是有联系的,所以在实际应用中,经常使用多表查询。多表查询就是同时查询两个或两个以上的表。
在 MySQL 中,多表查询主要有交叉连接、内连接和外连接。
交叉连接
交叉连接(CROSS JOIN)一般用来返回连接表的笛卡尔积。
交叉连接的语法格式如下:
SELECT <字段名> FROM <表1> CROSS JOIN <表2> [WHERE子句]或
SELECT <字段名> FROM <表1>, <表2> [WHERE子句]语法说明如下:
字段名:需要查询的字段名称。
<表1><表2>:需要交叉连接的表名。
WHERE 子句:用来设置交叉连接的查询条件。
注意:多个表交叉连接时,在 FROM 后连续使用 CROSS JOIN 或,即可。以上两种语法的返回结果是相同的,但是第一种语法才是官方建议的标准写法。
当连接的表之间没有关系时,我们会省略掉 WHERE 子句,这时返回结果就是两个表的笛卡尔积,返回结果数量就是两个表的数据行相乘。需要注意的是,如果每个表有 1000 行,那么返回结果的数量就有 1000×1000 = 1000000 行,数据量是非常巨大的。
交叉连接可以查询两个或两个以上的表,为了让读者更好的理解,下面先讲解两个表的交叉连接查询。
示例
查询学生信息表和科目信息表,并得到一个笛卡尔积。
为了方便观察学生信息表和科目表交叉连接后的运行结果,我们先分别查询出这两个表的数据,再进行交叉连接查询。
1)查询 tb_students_info 表中的数据,SQL 语句和运行结果如下:
mysql> SELECT * FROM tb_students_info; +----+--------+------+------+--------+-----------+ | id | name | age | sex | height | course_id | +----+--------+------+------+--------+-----------+ | 1 | Dany | 25 | 男 | 160 | 1 | | 2 | Green | 23 | 男 | 158 | 2 | | 3 | Henry | 23 | 女 | 185 | 1 | | 4 | Jane | 22 | 男 | 162 | 3 | | 5 | Jim | 24 | 女 | 175 | 2 | | 6 | John | 21 | 女 | 172 | 4 | | 7 | Lily | 22 | 男 | 165 | 4 | | 8 | Susan | 23 | 男 | 170 | 5 | | 9 | Thomas | 22 | 女 | 178 | 5 | | 10 | Tom | 23 | 女 | 165 | 5 | +----+--------+------+------+--------+-----------+ 10 rows in set (0.00 sec)2)查询 tb_course 表中的数据,SQL 语句和运行结果如下:
mysql> SELECT * FROM tb_course; +----+-------------+ | id | course_name | +----+-------------+ | 1 | Java | | 2 | MySQL | | 3 | Python | | 4 | Go | | 5 | C++ | +----+-------------+ 5 rows in set (0.00 sec)3)使用 CROSS JOIN 查询出两张表中的笛卡尔积,SQL 语句和运行结果如下:
mysql> SELECT * FROM tb_course CROSS JOIN tb_students_info; +----+-------------+----+--------+------+------+--------+-----------+ | id | course_name | id | name | age | sex | height | course_id | +----+-------------+----+--------+------+------+--------+-----------+ | 1 | Java | 1 | Dany | 25 | 男 | 160 | 1 | | 2 | MySQL | 1 | Dany | 25 | 男 | 160 | 1 | | 3 | Python | 1 | Dany | 25 | 男 | 160 | 1 | | 4 | Go | 1 | Dany | 25 | 男 | 160 | 1 | | 5 | C++ | 1 | Dany | 25 | 男 | 160 | 1 | | 1 | Java | 2 | Green | 23 | 男 | 158 | 2 | | 2 | MySQL | 2 | Green | 23 | 男 | 158 | 2 | | 3 | Python | 2 | Green | 23 | 男 | 158 | 2 | | 4 | Go | 2 | Green | 23 | 男 | 158 | 2 | | 5 | C++ | 2 | Green | 23 | 男 | 158 | 2 | | 1 | Java | 3 | Henry | 23 | 女 | 185 | 1 | | 2 | MySQL | 3 | Henry | 23 | 女 | 185 | 1 | | 3 | Python | 3 | Henry | 23 | 女 | 185 | 1 | | 4 | Go | 3 | Henry | 23 | 女 | 185 | 1 | | 5 | C++ | 3 | Henry | 23 | 女 | 185 | 1 | | 1 | Java | 4 | Jane | 22 | 男 | 162 | 3 | | 2 | MySQL | 4 | Jane | 22 | 男 | 162 | 3 | | 3 | Python | 4 | Jane | 22 | 男 | 162 | 3 | | 4 | Go | 4 | Jane | 22 | 男 | 162 | 3 | | 5 | C++ | 4 | Jane | 22 | 男 | 162 | 3 | | 1 | Java | 5 | Jim | 24 | 女 | 175 | 2 | | 2 | MySQL | 5 | Jim | 24 | 女 | 175 | 2 | | 3 | Python | 5 | Jim | 24 | 女 | 175 | 2 | | 4 | Go | 5 | Jim | 24 | 女 | 175 | 2 | | 5 | C++ | 5 | Jim | 24 | 女 | 175 | 2 | | 1 | Java | 6 | John | 21 | 女 | 172 | 4 | | 2 | MySQL | 6 | John | 21 | 女 | 172 | 4 | | 3 | Python | 6 | John | 21 | 女 | 172 | 4 | | 4 | Go | 6 | John | 21 | 女 | 172 | 4 | | 5 | C++ | 6 | John | 21 | 女 | 172 | 4 | | 1 | Java | 7 | Lily | 22 | 男 | 165 | 4 | | 2 | MySQL | 7 | Lily | 22 | 男 | 165 | 4 | | 3 | Python | 7 | Lily | 22 | 男 | 165 | 4 | | 4 | Go | 7 | Lily | 22 | 男 | 165 | 4 | | 5 | C++ | 7 | Lily | 22 | 男 | 165 | 4 | | 1 | Java | 8 | Susan | 23 | 男 | 170 | 5 | | 2 | MySQL | 8 | Susan | 23 | 男 | 170 | 5 | | 3 | Python | 8 | Susan | 23 | 男 | 170 | 5 | | 4 | Go | 8 | Susan | 23 | 男 | 170 | 5 | | 5 | C++ | 8 | Susan | 23 | 男 | 170 | 5 | | 1 | Java | 9 | Thomas | 22 | 女 | 178 | 5 | | 2 | MySQL | 9 | Thomas | 22 | 女 | 178 | 5 | | 3 | Python | 9 | Thomas | 22 | 女 | 178 | 5 | | 4 | Go | 9 | Thomas | 22 | 女 | 178 | 5 | | 5 | C++ | 9 | Thomas | 22 | 女 | 178 | 5 | | 1 | Java | 10 | Tom | 23 | 女 | 165 | 5 | | 2 | MySQL | 10 | Tom | 23 | 女 | 165 | 5 | | 3 | Python | 10 | Tom | 23 | 女 | 165 | 5 | | 4 | Go | 10 | Tom | 23 | 女 | 165 | 5 | | 5 | C++ | 10 | Tom | 23 | 女 | 165 | 5 | +----+-------------+----+--------+------+------+--------+-----------+ 50 rows in set (0.00 sec)由运行结果可以看出,tb_course 和 tb_students_info 表交叉连接查询后,返回了 50 条记录。可以想象,当表中的数据较多时,得到的运行结果会非常长,而且得到的运行结果也没太大的意义。所以,通过交叉连接的方式进行多表查询的这种方法并不常用,我们应该尽量避免这种查询。
笛卡尔积
笛卡尔积(Cartesian product)是指两个集合 X 和 Y 的乘积。
例如,有 A 和 B 两个集合,它们的值如下:
A = {1,2} B = {3,4,5}集合 A×B 和 B×A 的结果集分别表示为:
A×B={(1,3), (1,4), (1,5), (2,3), (2,4), (2,5) }; B×A={(3,1), (3,2), (4,1), (4,2), (5,1), (5,2) };以上 A×B 和 B×A 的结果就叫做两个集合的笛卡尔积。
并且,从以上结果我们可以看出:
两个集合相乘,不满足交换率,即 A×B≠B×A。
A 集合和 B 集合的笛卡尔积是 A 集合的元素个数 × B 集合的元素个数。
多表查询遵循的算法就是以上提到的笛卡尔积,表与表之间的连接可以看成是在做乘法运算。在实际应用中,应避免使用笛卡尔积,因为笛卡尔积中容易存在大量的不合理数据,简单来说就是容易导致查询结果重复、混乱。
内连接
内连接(INNER JOIN)组合两个表中的记录,通过设置连接条件的方式,返回关联字段相符的记录,也就是返回两个表的交集(阴影)部分。
内连接使用 INNER JOIN 关键字连接两张表,并使用 ON 子句来设置连接条件。如果没有连接条件,INNER JOIN 和 CROSS JOIN 在语法上是等同的,两者可以互换。
内连接的语法格式如下:
SELECT <字段名> FROM <表1> INNER JOIN <表2> [ON子句]语法说明如下。
字段名:需要查询的字段名称。
<表1><表2>:需要内连接的表名。
INNER JOIN :内连接中可以省略 INNER 关键字,只用关键字 JOIN。
ON 子句:用来设置内连接的连接条件。
INNER JOIN 也可以使用 WHERE 子句指定连接条件,但是 INNER JOIN ... ON 语法是官方的标准写法,而且 WHERE 子句在某些时候会影响查询的性能。
多个表内连接时,在 FROM 后连续使用 INNER JOIN 或 JOIN 即可。
示例:
在 tb_students_info 表和 tb_course 表之间,使用内连接查询学生姓名和相对应的课程名称,SQL 语句和运行结果如下。
mysql> SELECT s.name,c.course_name FROM tb_students_info s INNER JOIN tb_course c -> ON s.course_id = c.id; +--------+-------------+ | name | course_name | +--------+-------------+ | Dany | Java | | Green | MySQL | | Henry | Java | | Jane | Python | | Jim | MySQL | | John | Go | | Lily | Go | | Susan | C++ | | Thomas | C++ | | Tom | C++ | +--------+-------------+ 10 rows in set (0.00 sec)在进行左连接查询之前,我们先查看 tb_course 和 tb_students_info 两张表中的数据。SQL 语句和运行结果如下。
mysql> SELECT * FROM tb_course; +----+-------------+ | id | course_name | +----+-------------+ | 1 | Java | | 2 | MySQL | | 3 | Python | | 4 | Go | | 5 | C++ | | 6 | HTML | +----+-------------+ 6 rows in set (0.00 sec) mysql> SELECT * FROM tb_students_info; +----+--------+------+------+--------+-----------+ | id | name | age | sex | height | course_id | +----+--------+------+------+--------+-----------+ | 1 | Dany | 25 | 男 | 160 | 1 | | 2 | Green | 23 | 男 | 158 | 2 | | 3 | Henry | 23 | 女 | 185 | 1 | | 4 | Jane | 22 | 男 | 162 | 3 | | 5 | Jim | 24 | 女 | 175 | 2 | | 6 | John | 21 | 女 | 172 | 4 | | 7 | Lily | 22 | 男 | 165 | 4 | | 8 | Susan | 23 | 男 | 170 | 5 | | 9 | Thomas | 22 | 女 | 178 | 5 | | 10 | Tom | 23 | 女 | 165 | 5 | | 11 | LiMing | 22 | 男 | 180 | 7 | +----+--------+------+------+--------+-----------+ 11 rows in set (0.00 sec)在 tb_students_info 表和 tb_course 表中查询所有学生姓名和相对应的课程名称,包括没有课程的学生,SQL 语句和运行结果如下。
mysql> SELECT s.name,c.course_name FROM tb_students_info s LEFT OUTER JOIN tb_course c -> ON s.`course_id`=c.`id`; +--------+-------------+ | name | course_name | +--------+-------------+ | Dany | Java | | Henry | Java | | NULL | Java | | Green | MySQL | | Jim | MySQL | | Jane | Python | | John | Go | | Lily | Go | | Susan | C++ | | Thomas | C++ | | Tom | C++ | | LiMing | NULL | +--------+-------------+ 12 rows in set (0.00 sec)在 tb_students_info 表和 tb_course 表中查询所有课程,包括没有学生的课程,SQL 语句和运行结果如下。
mysql> SELECT s.name,c.course_name FROM tb_students_info s RIGHT OUTER JOIN tb_course c -> ON s.`course_id`=c.`id`; +--------+-------------+ | name | course_name | +--------+-------------+ | Dany | Java | | Green | MySQL | | Henry | Java | | Jane | Python | | Jim | MySQL | | John | Go | | Lily | Go | | Susan | C++ | | Thomas | C++ | | Tom | C++ | | NULL | HTML | +--------+-------------+ 11 rows in set (0.00 sec)可以看到,结果显示了 11 条记录,名称为 HTML 的课程目前没有学生,因为对应的 tb_students_info 表中并没有该学生的信息,所以该条记录只取出了 tb_course 表中相应的值,而从 tb_students_info 表中取出的值为 NULL。
多个表左/右连接时,在 ON 子句后连续使用 LEFT/RIGHT OUTER JOIN 或 LEFT/RIGHT JOIN 即可。
注: 使用外连接查询时,一定要分清需要查询的结果,是需要显示左表的全部记录还是右表的全部记录,然后选择相应的左连接和右连接。
以上就是mysql多表查询一般用什么?的详细内容!
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://www.haodehen.cn/did93488
mysql多表查询一般用什么?
阅读:43次