以list或tuple变量为参数产生一维数组:
>>> print(np.array([1,2,3,4])) [1 2 3 4] >>> print(np.array((1.2,2,3,4))) [ 1.2 2. 3. 4. ] >>> print type(np.array((1.2,2,3,4)))
以list或tuple变量为元素产生二维数组:
>>> print(np.array([[1,2],[3,4]])) [[1 2] [3 4]]
指定数据类型
例如numpy.int32, numpy.int16, and numpy.float64等:
>>> print np.array((1.2,2,3,4), dtype=np.int32) [1 2 3 4]
使用numpy.arange方法
>>> print(np.arange(15)) [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14] >>> print type(np.arange(15)) >>> print np.arange(15).reshape(3,5) [[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14]] >>> print type(np.arange(15).reshape(3,5))
使用numpy.linspace方法
例如,在从1到3中产生9个数:
>>> print(np.linspace(1,3,10)) [ 1. 1.22222222 1.44444444 1.66666667 1.88888889 2.11111111 2.33333333 2.55555556 2.77777778 3. ]
构造特定的矩阵
使用numpy.zeros,numpy.ones,numpy.eye
可以构造特定的矩阵
>>> print(np.zeros((3,4))) [[ 0. 0. 0. 0.] [ 0. 0. 0. 0.] [ 0. 0. 0. 0.]] >>> print(np.ones((4,3))) [[ 1. 1. 1.] [ 1. 1. 1.] [ 1. 1. 1.] [ 1. 1. 1.]] >>> print(np.eye(4)) [[ 1. 0. 0. 0.] [ 0. 1. 0. 0.] [ 0. 0. 1. 0.] [ 0. 0. 0. 1.]]
创建一个三维数组:
>>> print(np.ones((3,3,3))) [[[ 1. 1. 1.] [ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.] [ 1. 1. 1.]]]
获取数组的属性
>>> a = np.zeros((2,3,2)) >>> print(a.ndim) #数组的维数 3 >>> print(a.shape) #数组每一维的大小 (2, 3, 2) >>> print(a.size) #数组的元素数 12 >>> print(a.dtype) #元素类型 float64 >>> print(a.itemsize) #每个元素所占的字节数 8
数组索引,切片,赋值
>>>a = np.array( [[2,3,4],[5,6,7]] ) >>> print(a) [[2 3 4] [5 6 7]] >>> print(a[1,2]) #index从0开始 7 >>> print a[1,:] [5 6 7] >>> print(a[1,1:2]) [6] >>> a[1,:] = [8,9,10] #直接赋值 >>> print(a) [[ 2 3 4] [ 8 9 10]]
使用for操作元素
>>> for x in np.linspace(1,3,3): ... print(x) ... 1.0 2.0 3.0
基本的数组运算
先构造数组a、b:
>>> a = np.ones((2,2)) >>> b = np.eye(2) >>> print(a) [[ 1. 1.] [ 1. 1.]] >>> print(b) [[ 1. 0.] [ 0. 1.]]
数组的加减乘除
>>> print(a > 2) [[False False] [False False]] >>> print(a+b) [[ 2. 1.] [ 1. 2.]] >>> print(a-b) [[ 0. 1.] [ 1. 0.]] >>> print(b*2) [[ 2. 0.] [ 0. 2.]] >>> print((a*2)*(b*2)) [[ 4. 0.] [ 0. 4.]] >>> print(b/(a*2)) [[ 0.5 0. ] [ 0. 0.5]] >>> print((b*2)**4) [[ 16. 0] [ 0 16.]]
使用数组对象自带的方法
>>> a.sum() #a的元素个数 4.0 >>> a.sum(axis=0) #计算每一列(二维数组中类似于矩阵的列)的和 array([ 2., 2.]) >>> a.min() 1.0 >>> a.max() 1.0 使用numpy下的方法 >>> np.sin(a) array([[ 0.84147098, 0.84147098], [ 0.84147098, 0.84147098]]) >>> np.max(a) 1.0 >>> np.floor(a) array([[ 1., 1.], [ 1., 1.]]) >>> np.exp(a) array([[ 2.71828183, 2.71828183], [ 2.71828183, 2.71828183]]) >>> np.dot(a,a) ##矩阵乘法 array([[ 2., 2.], [ 2., 2.]])
合并数组
使用numpy下的vstack和hstack函数:
>>> a = np.ones((2,2)) >>> b = np.eye(2) >>> print(np.vstack((a,b))) #顾名思义 v--vertical 垂直 [[ 1. 1.] [ 1. 1.] [ 1. 0.] [ 0. 1.]] >>> print(np.hstack((a,b))) #顾名思义 h--horizonal 水平 [[ 1. 1. 1. 0.] [ 1. 1. 0. 1.]]
看一下这两个函数有没有涉及到浅拷贝这种问题:
>>> c = np.hstack((a,b)) >>> print c [[ 1. 1. 1. 0.] [ 1. 1. 0. 1.]] >>> a[1,1] = 5 >>> b[1,1] = 5 >>> print c [[ 1. 1. 1. 0.] [ 1. 1. 0. 1.]]
深拷贝数组
数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些:
>>> a = np.ones((2,2)) >>> b = a >>> print(b is a) True >>> c = a.copy() #深拷贝 >>> c is a False
基本的矩阵运算
转置:
>>> a = np.array([[1,0],[2,3]]) >>> print(a) [[1 0] [2 3]] >>> print(a.transpose()) [[1 2] [0 3]]
numpy.linalg关于矩阵运算的方法
>>> import numpy.linalg as nplg1
特征值、特征向量:
>>> print nplg.eig(a) (array([ 3., 1.]), array([[ 0. , 0.70710678], [ 1. , -0.70710678]]))
copy:为bool类型。
>>> a = np.matrix('1 2 7; 3 4 8; 5 6 9') >>> a #矩阵的换行必须是用分号(;)隔开,内部数据必须为字符串形式(‘ ’),矩 matrix([[1, 2, 7], #阵的元素之间必须以空格隔开。 [3, 4, 8], [5, 6, 9]]) >>> b=np.array([[1,5],[3,2]]) >>> x=np.matrix(b) #矩阵中的data可以为数组对象。 >>> x matrix([[1, 5], [3, 2]])
举例
>>> a = np.asmatrix('0 2 7; 3 4 8; 5 0 9') >>> a.all() False >>> a.all(axis=0) matrix([[False, False, True]], dtype=bool) >>> a.all(axis=1) matrix([[False], [ True], [False]], dtype=bool)
Astype方法
>>> a.astype(float) matrix([[ 12., 3., 5.], [ 32., 23., 9.], [ 10., -14., 78.]])
Argsort方法
>>> a=np.matrix('12 3 5; 32 23 9; 10 -14 78') >>> a.argsort() matrix([[1, 2, 0], [2, 1, 0], [1, 0, 2]])
Clip方法
>>> a matrix([[ 12, 3, 5], [ 32, 23, 9], [ 10, -14, 78]]) >>> a.clip(12,32) matrix([[12, 12, 12], [32, 23, 12], [12, 12, 32]])
Cumprod方法
>>> a.cumprod(axis=1) matrix([[ 12, 36, 180], [ 32, 736, 6624], [ 10, -140, -10920]])
Cumsum方法
>>> a.cumsum(axis=1) matrix([[12, 15, 20], [32, 55, 64], [10, -4, 74]])
Tolist方法
>>> b.tolist() [[12, 3, 5], [32, 23, 9], [10, -14, 78]]
Tofile方法
>>> b.tofile('d:\\b.txt')
compress()方法
>>> from numpy import *
>>> a = array([10, 20, 30, 40]) >>> condition = (a > 15) & (a >> condition array([False, True, True, False], dtype=bool) >>> a.compress(condition) array([20, 30]) >>> a[condition] # same effect array([20, 30]) >>> compress(a >= 30, a) # this form a so exists array([30, 40]) >>> b = array([[10,20,30],[40,50,60]]) >>> b.compress(b.ravel() >= 22) array([30, 40, 50, 60]) >>> x = array([3,1,2]) >>> y = array([50, 101]) >>> b.compress(x >= 2, axis=1) # illustrates the use of the axis keyword array([[10, 30], [40, 60]]) >>> b.compress(y >= 100, axis=0) array([[40, 50, 60]])
查看更多关于Python科学计算-Numpy快速入门的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://www.haodehen.cn/did86935