为了方便工作,我需要从enwiki-pages-articles.xml中过滤类别,并将它们存储相同的XML格式的类别。因此我选用了SAX解析器,在PyPy和CPython中都适用的包装器解析。对外的原生编译包(同事在PyPy和CPython 中) 。
代码非常简单:
class WikiCategoryHandler(handler.ContentHandler):
"""Class which detecs category pages and stores them separately
"""
ignored = set(('contributor', 'comment', 'meta'))
def __init__(self, f_out):
handler.ContentHandler.__init__(self)
self.f_out = f_out
self.curr_page = None
self.curr_tag = ''
self.curr_elem = Element('root', {})
self.root = self.curr_elem
self.stack = Stack()
self.stack.push(self.curr_elem)
self.skip = 0
def startElement(self, name, attrs):
if self.skip>0 or name in self.ignored:
self.skip += 1
return
self.curr_tag = name
elem = Element(name, attrs)
if name == 'page':
elem.ns = -1
self.curr_page = elem
else: # we don't want to keep old pages in memory
self.curr_elem.append(elem)
self.stack.push(elem)
self.curr_elem = elem
def endElement(self, name):
if self.skip>0:
self.skip -= 1
return
if name == 'page':
self.task()
self.curr_page = None
self.stack.pop()
self.curr_elem = self.stack.top()
self.curr_tag = self.curr_elem.tag
def characters(self, content):
if content.isspace(): return
if self.skip == 0:
self.curr_elem.append(TextElement(content))
if self.curr_tag == 'ns':
self.curr_page.ns = int(content)
def startDocument(self):
self.f_out.write(" \n")
def endDocument(self):
self.f_out.write(" \n")
print("FINISH PROCESSING WIKIPEDIA")
def task(self):
if self.curr_page.ns == 14:
self.f_out.write(self.curr_page.render())
class Element(object):
def __init__(self, tag, attrs):
self.tag = tag
self.attrs = attrs
self.childrens = []
self.append = self.childrens.append
def __repr__(self):
return "Element {}".format(self.tag)
def render(self, margin=0):
if not self.childrens:
return u"{0} ".format(
" "*margin,
self.tag,
"".join([' {}="{}"'.format(k,v) for k,v in {}.iteritems()]))
if isinstance(self.childrens[0], TextElement) and len(self.childrens)==1:
return u"{0} {3} ".format(
" "*margin,
self.tag,
"".join([u' {}="{}"'.format(k,v) for k,v in {}.iteritems()]),
self.childrens[0].render())
return u"{0} \n{3}\n{0} ".format(
" "*margin,
self.tag,
"".join([u' {}="{}"'.format(k,v) for k,v in {}.iteritems()]),
"\n".join((c.render(margin+2) for c in self.childrens)))
class TextElement(object):
def __init__(self, content):
self.content = content
def __repr__(self):
return "TextElement" def render(self, margin=0):
return self.content 这个任务使用MongoDB作为数据来源,并对结构进行重新分配。算法是:
for each category.id in redis_categories (it holds *category.id -> category title mapping*) do:
title = redis_categories.get(category.id)
parent_categories = mongodb get categories for title
for each parent_cat in parent categories do:
redis_tree.sadd(parent_cat, title) # add to parent_cat set title 结论
进行的测试仅仅是我最终工作的一个简介。它需要一个知识体系,一个我从抽取维基百科中适当的内容中得到的知识体系。
PyPy相比CPython,在我这个简单的数据库操作中,提高了2-3倍的性能。(我这里没有算上SQL解析器,大约8倍)
多亏了PyPy,我的工作更加愉悦了——我没有改写算法就使Python有了效率,而且PyPy没有像CPython一样把我的CPU弄挂了,以至于一段时间内我没法正常的使用我的笔记本了(看看CPU时间占的百分比吧)。
任务几乎都是数据库操作,而CPython有一些加速的乱七八糟的C语言模块。PyPy不使用这些,但结果却更快!
我的全部工作需要大量的周期,所以我真高兴能用PyPy。
查看更多关于PyPy和CPython的性能比较测试的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://www.haodehen.cn/did86845