#include <iostream> //值传递 void func1(int a) { std::cout << "值传递,变量地址:" << &a << ", 变量值:" << a << std::endl; a ++ ; } //指针传递 void func2 (int* a) { std::cout << "指针传递,变量地址:" << a << ", 变量值:" << *a << std::endl; *a = *a + 1; } //引用传递 void func3 (int& a) { std::cout << "指针传递,变量地址:" << &a << ", 变量值:" << a << std::endl; a ++; } int main() { int a = 5; std::cout << "变量实际地址:" << &a << ", 变量值:" << a << std::endl; func1(a); std::cout << "值传递操作后,变量值:" << a << std::endl; std::cout << "变量实际地址:" << &a << ", 变量值:" << a << std::endl; func2(&a); std::cout << "指针传递操作后,变量值:" << a << std::endl; std::cout << "变量实际地址:" << &a << ", 变量值:" << a << std::endl; func3(a); std::cout << "引用传递操作后,变量值:" << a << std::endl; return 0; }
package main import ( "fmt" ) func main() { a := 1 fmt.Println( "变量实际地址:", &a, "变量值:", a) func1 (a) fmt.Println( "值传递操作后,变量值:", a) fmt.Println( "变量实际地址:", &a, "变量值:", a) func2(&a) fmt.Println( "指针传递操作后,变量值:", a) } //值传递 func func1 (a int) { a++ fmt.Println( "值传递,变量地址:", &a, "变量值:", a) } //指针传递 func func2 (a *int) { *a = *a + 1 fmt.Println( "指针传递,变量地址:", a, "变量值:", *a) }
package main import ( "fmt" ) func main() { m1 := make([]string, 1) m1[0] = "test" fmt.Println("调用 func1 前 m1 值:", m1) func1(m1) fmt.Println("调用 func1 后 m1 值:", m1) } func func1 (a []string) { a[0] = "val1" fmt.Println("func1中:", a) }
package main import ( "fmt" ) func main() { m1 := make([]string, 1) m1[0] = "test" fmt.Println("调用 func1 前 m1 值:", m1, cap(m1)) func1(m1) fmt.Println("调用 func1 后 m1 值:", m1, cap(m1)) } func func1 (a []string) { a = append(a, "val1") fmt.Println("func1中:", a, cap(a)) }
这个结果说明,调用前后切片并没有发生变化。之前例子中所谓的“变化”其实是切片中指向数组的指针指向的数组的元素发生了变化,这句话可能比较拗口,但实际如此。再次证明,引用类型的传参不是 pass-by-reference 。
想透彻的了解 一个切片是一个数组片段的描述。它包含了指向数组的指针,片段的长度这句话,有兴趣可以看这篇文章:http://www.gxlcms.com/kf/201604/499045.html。学习一下切片的内存模型。
总结
总结很简单,语言也需要透过现象看本质。还有本文的结论需要记住:
There is no pass-by-reference in Go.
以上就是Go语言对比 C++引用传参的详细内容,更多请关注Gxl网其它相关文章!
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://www.haodehen.cn/did84501