好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

Python中关于闭包的使用实例

这篇文章主要介绍了Python 基础教程之闭包的使用方法的相关资料,希望大家通过本文能帮助到大家,需要的朋友可以参考下

def line_conf():
  def line(x):
    return 2*x+1
  print(line(5))  # within the scope


line_conf()
print(line(5))    # out of the scope 
def line_conf():
  def line(x):
    return 2*x+1
  return line    # return a function object

my_line = line_conf()
print(my_line(5)) 
def line_conf():
  b = 15
  def line(x):
    return 2*x+b
  return line    # return a function object

b = 5
my_line = line_conf()
print(my_line(5)) 
def line_conf():
  b = 15
  def line(x):
    return 2*x+b
  return line    # return a function object

b = 5
my_line = line_conf()
print(my_line.__closure__)
print(my_line.__closure__[0].cell_contents) 
def line_conf(a, b):
  def line(x):
    return ax + b
  return line

line1 = line_conf(1, 1)
line2 = line_conf(4, 5)
print(line1(5), line2(5)) 

这个例子中,函数line与环境变量a,b构成闭包。在创建闭包的时候,我们通过line_conf的参数a,b说明了这两个环境变量的取值,这样,我们就确定了函数的最终形式(y = x + 1和y = 4x + 5)。我们只需要变换参数a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。

如果没有闭包,我们需要每次创建直线函数的时候同时说明a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。利用闭包,我们实际上创建了泛函。line函数定义一种广泛意义的函数。这个函数的一些方面已经确定(必须是直线),但另一些方面(比如a和b参数待定)。随后,我们根据line_conf传递来的参数,通过闭包的形式,将最终函数确定下来。

闭包与并行运算

闭包有效的减少了函数所需定义的参数数目。这对于并行运算来说有重要的意义。在并行运算的环境下,我们可以让每台电脑负责一个函数,然后将一台电脑的 输出和下一台电脑的输入串联起来。最终,我们像流水线一样工作,从串联的电脑集群一端输入数据,从另一端 输出数据。这样的情境最适合只有一个参数输入的函数。闭包就可以实现这一目的。

并行运算正称为一个热点。这也是函数式编程又热起来的一个重要原因。函数式编程早在1950年代就已经存在,但应用并不广泛。然而,我们上面描述的流水线式的工作并行集群过程,正适合函数式编程。由于函数式编程这一天然优势,越来越多的语言也开始加入对函数式编程范式的支持。

以上就是Python中关于闭包的使用实例的详细内容,更多请关注Gxl网其它相关文章!

查看更多关于Python中关于闭包的使用实例的详细内容...

  阅读:39次