好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

爬虫框架Scrapy实战之批量抓取招聘信息

所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据。不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了。一般的方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样。

定义Item

在items.py里面定义我们要抓取的数据:

from scrapy.item import Item, Field
class TencentItem(Item):
    name = Field()                # 职位名称
    catalog = Field()             # 职位类别
    workLocation = Field()        # 工作地点
    recruitNumber = Field()       # 招聘人数
    detailLink = Field()          # 职位详情页链接
    publishTime = Field()         # 发布时间 

实现Spider

Spider是一个继承自scrapy.contrib.spiders.CrawlSpider的Python类,有三个必需的定义的成员

name: 名字,这个spider的标识

start_urls:一个url列表,spider从这些网页开始抓取

parse():一个方法,当start_urls里面的网页抓取下来之后需要调用这个方法解析网页内容,同时需要返回下一个需要抓取的网页,或者返回items列表

所以在spiders目录下新建一个spider,tencent_spider.py:

import re
import json
from scrapy.selector import Selector
try:
    from scrapy.spider import Spider
except:
    from scrapy.spider import BaseSpider as Spider
from scrapy.utils.response import get_base_url
from scrapy.utils.url import urljoin_rfc
from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor as sle
from itzhaopin.items import *
from itzhaopin.misc.log import *
class TencentSpider(CrawlSpider):
    name = "tencent"
    allowed_domains = ["tencent测试数据"]
    start_urls = [
        "http://hr.tencent测试数据/position.php"
    ]
    rules = [ # 定义爬取URL的规则
        Rule(sle(allow=("/position.php\?&start=\d{,4}#a")), follow=True, callback='parse_item')
    ]
    def parse_item(self, response): # 提取数据到Items里面,主要用到XPath和CSS选择器提取网页数据
        items = []
        sel = Selector(response)
        base_url = get_base_url(response)
        sites_even = sel.css('table.tablelist tr.even')
        for site in sites_even:
            item = TencentItem()
            item['name'] = site.css('.l.square a').xpath('text()').extract()
            relative_url = site.css('.l.square a').xpath('@href').extract()[0]
            item['detailLink'] = urljoin_rfc(base_url, relative_url)
            item['catalog'] = site.css('tr > td:nth-child(2)::text').extract()
            item['workLocation'] = site.css('tr > td:nth-child(4)::text').extract()
            item['recruitNumber'] = site.css('tr > td:nth-child(3)::text').extract()
            item['publishTime'] = site.css('tr > td:nth-child(5)::text').extract()
            items.append(item)
            #print repr(item).decode("unicode-escape") + '\n'
        sites_odd = sel.css('table.tablelist tr.odd')
        for site in sites_odd:
            item = TencentItem()
            item['name'] = site.css('.l.square a').xpath('text()').extract()
            relative_url = site.css('.l.square a').xpath('@href').extract()[0]
            item['detailLink'] = urljoin_rfc(base_url, relative_url)
            item['catalog'] = site.css('tr > td:nth-child(2)::text').extract()
            item['workLocation'] = site.css('tr > td:nth-child(4)::text').extract()
            item['recruitNumber'] = site.css('tr > td:nth-child(3)::text').extract()
            item['publishTime'] = site.css('tr > td:nth-child(5)::text').extract()
            items.append(item)
            #print repr(item).decode("unicode-escape") + '\n'
        info('parsed ' + str(response))
        return items
    def _process_request(self, request):
        info('process ' + str(request))
        return request 

实现PipeLine

PipeLine用来对Spider返回的Item列表进行保存操作,可以写入到文件、或者数据库等。

PipeLine只有一个需要实现的方法:process_item,例如我们将Item保存到JSON格式文件中:

pipelines.py

from scrapy import signals
import json
import codecs
class JsonWithEncodingTencentPipeline(object):
    def __init__(self):
        self.file = codecs.open('tencent.json', 'w', encoding='utf-8')
    def process_item(self, item, spider):
        line = json.dumps(dict(item), ensure_ascii=False) + "\n"
        self.file.write(line)
        return item
    def spider_closed(self, spider):
        self.file.close(
) 

到现在,我们就完成了一个基本的爬虫的实现,可以输入下面的命令来启动这个Spider:

scrapy crawl tencent 

爬虫运行结束后,在当前目录下将会生成一个名为tencent.json的文件,其中以JSON格式保存了职位招聘信息。

部分内容如下:

{"recruitNumber": ["1"], "name": ["SD5-资深手游策划(深圳)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=15626&keywords=&tid=0&lid=0", "publishTime": ["2014-04-25"], "catalog": ["产品/项目类"], "workLocation": ["深圳"]}

{"recruitNumber": ["1"], "name": ["TEG13-后台开发工程师(深圳)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=15666&keywords=&tid=0&lid=0", "publishTime": ["2014-04-25"], "catalog": ["技术类"], "workLocation": ["深圳"]}

{"recruitNumber": ["2"], "name": ["TEG12-数据中心高级经理(深圳)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=15698&keywords=&tid=0&lid=0", "publishTime": ["2014-04-25"], "catalog": ["技术类"], "workLocation": ["深圳"]}

{"recruitNumber": ["1"], "name": ["GY1-微信支付品牌策划经理(深圳)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=15710&keywords=&tid=0&lid=0", "publishTime": ["2014-04-25"], "catalog": ["市场类"], "workLocation": ["深圳"]}

{"recruitNumber": ["2"], "name": ["SNG06-后台开发工程师(深圳)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=15499&keywords=&tid=0&lid=0", "publishTime": ["2014-04-25"], "catalog": ["技术类"], "workLocation": ["深圳"]}

{"recruitNumber": ["2"], "name": ["OMG01-腾讯时尚视频策划编辑(北京)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=15694&keywords=&tid=0&lid=0", "publishTime": ["2014-04-25"], "catalog": ["内容编辑类"], "workLocation": ["北京"]}

{"recruitNumber": ["1"], "name": ["HY08-QT客户端Windows开发工程师(深圳)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=11378&keywords=&tid=0&lid=0", "publishTime": ["2014-04-25"], "catalog": ["技术类"], "workLocation": ["深圳"]}

{"recruitNumber": ["5"], "name": ["HY1-移动游戏测试经理(上海)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=15607&keywords=&tid=0&lid=0", "publishTime": ["2014-04-25"], "catalog": ["技术类"], "workLocation": ["上海"]}

{"recruitNumber": ["1"], "name": ["HY6-网吧平台高级产品经理(深圳)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=10974&keywords=&tid=0&lid=0", "publishTime": ["2014-04-25"], "catalog": ["产品/项目类"], "workLocation": ["深圳"]}

{"recruitNumber": ["4"], "name": ["TEG14-云存储研发工程师(深圳)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=15168&keywords=&tid=0&lid=0", "publishTime": ["2014-04-24"], "catalog": ["技术类"], "workLocation": ["深圳"]}

{"recruitNumber": ["1"], "name": ["CB-薪酬经理(深圳)"], "detailLink": "http://hr.tencent测试数据/position_detail.php?id=2309&keywords=&tid=0&lid=0", "publishTime": ["2013-11-28"], "catalog": ["职能类"], "workLocation": ["深圳"]}

查看更多关于爬虫框架Scrapy实战之批量抓取招聘信息的详细内容...

  阅读:40次