好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

解决Python基于回溯法子集树模板实现8皇后问题

这篇文章主要介绍了Python基于回溯法子集树模板实现8皇后问题,简单说明了8皇后问题的原理并结合实例形式分析了Python回溯法子集树模板解决8皇后问题的具体实现技巧,需要的朋友可以参考下

'''
8皇后问题
'''
n = 8 
x = [] # 一个解(n元数组)
X = [] # 一组解
# 冲突检测:判断 x[k] 是否与前 x[0~k-1] 冲突
def conflict(k):
 global x
 for i in range(k):        # 遍历前 x[0~k-1]
  if x[i]==x[k] or abs(x[i]-x[k])==abs(i-k): # 判断是否与 x[k] 冲突
   return True
 return False
# 套用子集树模板
def queens(k): # 到达第k行
 global n, x, X
 if k >= n:   # 超出最底行
  #print(x)
  X.append(x[:]) # 保存(一个解),注意x[:]
 else:
  for i in range(n): # 遍历第 0~n-1 列(即n个状态)
   x.append(i)  # 皇后置于第i列,入栈
   if not conflict(k): # 剪枝
    queens(k+1)
   x.pop()   # 回溯,出栈
# 解的可视化(根据一个解x,复原棋盘。'X'表示皇后)
def show(x):
 global n
 for i in range(n):
  print('. ' * (x[i]) + 'X ' + '. '*(n-x[i]-1))
# 测试
queens(0) # 从第0行开始
print(X[-1], '\n')
show(X[-1]) 

效果图

以上就是解决Python基于回溯法子集树模板实现8皇后问题的详细内容,更多请关注Gxl网其它相关文章!

查看更多关于解决Python基于回溯法子集树模板实现8皇后问题的详细内容...

  阅读:37次