好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

详解Python使用回溯法子集树模板解决迷宫问题

这篇文章主要介绍了Python使用回溯法解决迷宫问题,简单讲述了迷宫问题的原理并结合实例形式分析了Python基于回溯法子集树模板解决迷宫问题的相关操作技巧与注意事项,需要的朋友可以参考下

# 迷宫(1是墙,0是通路)
maze = [[1,1,1,1,1,1,1,1,1,1],
    [0,0,1,0,1,1,1,1,0,1],
    [1,1,0,1,0,1,1,0,1,1],
    [1,0,1,1,1,0,0,1,1,1],
    [1,1,1,0,0,1,1,0,1,1],
    [1,1,0,1,1,1,1,1,0,1],
    [1,0,1,0,0,1,1,1,1,0],
    [1,1,1,1,1,0,1,1,1,1]]
m, n = 8, 10  # 8行,10列
entry = (1,0) # 迷宫入口
path = [entry] # 一个解(路径)
paths = []   # 一组解
# 移动的方向(顺时针8个:N, EN, E, ES, S, WS, W, WN)
directions = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]
# 冲突检测
def conflict(nx, ny):
  global m,n,maze
  # 是否在迷宫中,以及是否可通行
  if 0 <= nx < m and 0 <= ny < n and maze[nx][ny]==0:
    return False
  return True
# 套用子集树模板
def walk(x, y): # 到达(x,y)格子
  global entry,m,n,maze,path,paths,directions
  if (x,y) != entry and (x % (m-1) ==0 or y % (n-1) == 0): # 出口
    #print(path)
    paths.append(path[:]) # 直接保存,未做最优化
  else:
    for d in directions: # 遍历8个方向(亦即8个状态)
      nx, ny = x+d[0], y+d[1]
      path.append((nx,ny))   # 保存,新坐标入栈
      if not conflict(nx, ny): # 剪枝
        maze[nx][ny] = 2     # 标记,已访问(奇怪,此两句只能放在if区块内!)
        walk(nx, ny)
        maze[nx][ny] = 0     # 回溯,恢复
      path.pop()        # 回溯,出栈
# 解的可视化(根据一个解x,复原迷宫路径,'2'表示通路)
def show(path):
  global maze
  import pprint, copy
  maze2 = copy.deepcopy(maze)
  for p in path:
    maze2[p[0]][p[1]] = 2 # 通路
  pprint.pprint(maze) # 原迷宫
  print()
  pprint.pprint(maze2) # 带通路的迷宫
# 测试
walk(1,0)
print(paths[-1], '\n') # 看看最后一条路径
show(paths[-1]) 

效果图

以上就是详解Python使用回溯法子集树模板解决迷宫问题的详细内容,更多请关注Gxl网其它相关文章!

查看更多关于详解Python使用回溯法子集树模板解决迷宫问题的详细内容...

  阅读:40次