好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

Redis内存模型(详解)

Redis是目前最火爆的内存数据库之一,通过在内存中读写数据,大大提高了读写速度,可以说Redis是实现网站高并发不可或缺的一部分。【推荐学习:Redis视频教程】

typedef struct redisObject {
  unsigned type:4;
  unsigned encoding:4;
  unsigned lru:REDIS_LRU_BITS; /* lru time (relative to server.lruclock) */
  int refcount;
  void *ptr;
} robj;
struct sdshdr { 
    int len;
    int free;
    char buf[];
};
typedef struct dictEntry{
    void *key;
    union{
        void *val;
        uint64_tu64;
        int64_ts64;
    }v;
    struct dictEntry *next;
}dictEntry;
typedef struct dictht{
    dictEntry **table;
    unsigned long size;
    unsigned long sizemask;
    unsigned long used;
}dictht;

其中,各个属性的功能说明如下:

table属性是一个指针,指向bucket; size属性记录了哈希表的大小,即bucket的大小; used记录了已使用的dictEntry的数量; sizemask属性的值总是为size-1,这个属性和哈希值一起决定一个键在table中存储的位置。

dict

一般来说,通过使用dictht和dictEntry结构,便可以实现普通哈希表的功能;但是Redis的实现中,在dictht结构的上层,还有一个dict结构。下面说明dict结构的定义及作用。

dict结构如下:

typedef struct dict{
    dictType *type;
    void *privdata;
    dictht ht[2];
    int trehashidx;
} dict;

其中,type属性和privdata属性是为了适应不同类型的键值对,用于创建多态字典。

ht属性和trehashidx属性则用于rehash,即当哈希表需要扩展或收缩时使用。ht是一个包含两个项的数组,每项都指向一个dictht结构,这也是Redis的哈希会有1个dict、2个dictht结构的原因。通常情况下,所有的数据都是存在放dict的ht[0]中,ht[1]只在rehash的时候使用。dict进行rehash操作的时候,将ht[0]中的所有数据rehash到ht[1]中。然后将ht[1]赋值给ht[0],并清空ht[1]。

因此,Redis中的哈希之所以在dictht和dictEntry结构之外还有一个dict结构,一方面是为了适应不同类型的键值对,另一方面是为了rehash。

(3)编码转换

如前所述,Redis中内层的哈希既可能使用哈希表,也可能使用压缩列表。

只有同时满足下面两个条件时,才会使用压缩列表:哈希中元素数量小于512个;哈希中所有键值对的键和值字符串长度都小于64字节。如果有一个条件不满足,则使用哈希表;且编码只可能由压缩列表转化为哈希表,反方向则不可能。

下图展示了Redis内层的哈希编码转换的特点:

4、集合

(1)概况

集合(set)与列表类似,都是用来保存多个字符串,但集合与列表有两点不同:集合中的元素是无序的,因此不能通过索引来操作元素;集合中的元素不能有重复。

一个集合中最多可以存储2^32-1个元素;除了支持常规的增删改查,Redis还支持多个集合取交集、并集、差集。

(2)内部编码

集合的内部编码可以是整数集合(intset)或哈希表(hashtable)。

哈希表前面已经讲过,这里略过不提;需要注意的是,集合在使用哈希表时,值全部被置为null。

整数集合的结构定义如下:

typedef struct intset{
    uint32_t encoding;
    uint32_t length;
    int8_t contents[];
} intset;

其中,encoding代表contents中存储内容的类型,虽然contents(存储集合中的元素)是int8_t类型,但实际上其存储的值是int16_t、int32_t或int64_t,具体的类型便是由encoding决定的;length表示元素个数。

整数集合适用于集合所有元素都是整数且集合元素数量较小的时候,与哈希表相比,整数集合的优势在于集中存储,节省空间;同时,虽然对于元素的操作复杂度也由O(1)变为了O(n),但由于集合数量较少,因此操作的时间并没有明显劣势。

(3)编码转换

只有同时满足下面两个条件时,集合才会使用整数集合:集合中元素数量小于512个;集合中所有元素都是整数值。如果有一个条件不满足,则使用哈希表;且编码只可能由整数集合转化为哈希表,反方向则不可能。

下图展示了集合编码转换的特点:

5、有序集合

(1)概况

有序集合与集合一样,元素都不能重复;但与集合不同的是,有序集合中的元素是有顺序的。与列表使用索引下标作为排序依据不同,有序集合为每个元素设置一个分数(score)作为排序依据。

(2)内部编码

有序集合的内部编码可以是压缩列表(ziplist)或跳跃表(skiplist)。ziplist在列表和哈希中都有使用,前面已经讲过,这里略过不提。

跳跃表是一种有序数据结构,通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。除了跳跃表,实现有序数据结构的另一种典型实现是平衡树;大多数情况下,跳跃表的效率可以和平衡树媲美,且跳跃表实现比平衡树简单很多,因此redis中选用跳跃表代替平衡树。跳跃表支持平均O(logN)、最坏O(N)的复杂点进行节点查找,并支持顺序操作。Redis的跳跃表实现由zskiplist和zskiplistNode两个结构组成:前者用于保存跳跃表信息(如头结点、尾节点、长度等),后者用于表示跳跃表节点。具体结构相对比较复杂,略。

(3)编码转换

只有同时满足下面两个条件时,才会使用压缩列表:有序集合中元素数量小于128个;有序集合中所有成员长度都不足64字节。如果有一个条件不满足,则使用跳跃表;且编码只可能由压缩列表转化为跳跃表,反方向则不可能。

下图展示了有序集合编码转换的特点:

五、应用举例

了解Redis的内存模型之后,下面通过几个例子说明其应用。

1、估算Redis内存使用量

要估算redis中的数据占据的内存大小,需要对redis的内存模型有比较全面的了解,包括前面介绍的hashtable、sds、redisobject、各种对象类型的编码方式等。

下面以最简单的字符串类型来进行说明。

假设有90000个键值对,每个key的长度是7个字节,每个value的长度也是7个字节(且key和value都不是整数);下面来估算这90000个键值对所占用的空间。在估算占据空间之前,首先可以判定字符串类型使用的编码方式:embstr。

90000个键值对占据的内存空间主要可以分为两部分:一部分是90000个dictEntry占据的空间;一部分是键值对所需要的bucket空间。

每个dictEntry占据的空间包括:

1)一个dictEntry,24字节,jemalloc会分配32字节的内存块

2)一个key,7字节,所以SDS(key)需要7+9=16个字节,jemalloc会分配16字节的内存块

3)一个redisObject,16字节,jemalloc会分配16字节的内存块

4)一个value,7字节,所以SDS(value)需要7+9=16个字节,jemalloc会分配16字节的内存块

5)综上,一个dictEntry需要32+16+16+16=80个字节。

bucket空间:bucket数组的大小为大于90000的最小的2^n,是131072;每个bucket元素为8字节(因为64位系统中指针大小为8字节)。

因此,可以估算出这90000个键值对占据的内存大小为:90000*80 + 131072*8 = 8248576。

下面写个程序在redis中验证一下:

public class RedisTest {

  public static Jedis jedis = new Jedis("localhost", 6379);

  public static void main(String[] args) throws Exception{
    Long m1 = Long.valueOf(getMemory());
    insertData();
    Long m2 = Long.valueOf(getMemory());
    System.out.println(m2 - m1);
  }

  public static void insertData(){
    for(int i = 10000; i < 100000; i++){
      jedis.set("aa" + i, "aa" + i); //key和value长度都是7字节,且不是整数
    }
  }

  public static String getMemory(){
    String memoryAllLine = jedis.info("memory");
    String usedMemoryLine = memoryAllLine.split("\r\n")[1];
    String memory = usedMemoryLine.substring(usedMemoryLine.indexOf(':') + 1);
    return memory;
  }
}

理论值与结果值误差在万分之1.2,对于计算需要多少内存来说,这个精度已经足够了。之所以会存在误差,是因为在我们插入90000条数据之前redis已分配了一定的bucket空间,而这些bucket空间尚未使用。

作为对比将key和value的长度由7字节增加到8字节,则对应的SDS变为17个字节,jemalloc会分配32个字节,因此每个dictEntry占用的字节数也由80字节变为112字节。此时估算这90000个键值对占据内存大小为:90000*112 + 131072*8 = 11128576。

在redis中验证代码如下(只修改插入数据的代码):

public static void insertData(){
  for(int i = 10000; i < 100000; i++){
    jedis.set("aaa" + i, "aaa" + i); //key和value长度都是8字节,且不是整数
  }
}

运行结果:11128576;估算准确。

对于字符串类型之外的其他类型,对内存占用的估算方法是类似的,需要结合具体类型的编码方式来确定。

2、优化内存占用

了解redis的内存模型,对优化redis内存占用有很大帮助。下面介绍几种优化场景。

(1)利用jemalloc特性进行优化

上一小节所讲述的90000个键值便是一个例子。由于jemalloc分配内存时数值是不连续的,因此key/value字符串变化一个字节,可能会引起占用内存很大的变动;在设计时可以利用这一点。

例如,如果key的长度如果是8个字节,则SDS为17字节,jemalloc分配32字节;此时将key长度缩减为7个字节,则SDS为16字节,jemalloc分配16字节;则每个key所占用的空间都可以缩小一半。

(2)使用整型/长整型

如果是整型/长整型,Redis会使用int类型(8字节)存储来代替字符串,可以节省更多空间。因此在可以使用长整型/整型代替字符串的场景下,尽量使用长整型/整型。

(3)共享对象

利用共享对象,可以减少对象的创建(同时减少了redisObject的创建),节省内存空间。目前redis中的共享对象只包括10000个整数(0-9999);可以通过调整REDIS_SHARED_INTEGERS参数提高共享对象的个数;例如将REDIS_SHARED_INTEGERS调整到20000,则0-19999之间的对象都可以共享。

考虑这样一种场景:论坛网站在redis中存储了每个帖子的浏览数,而这些浏览数绝大多数分布在0-20000之间,这时候通过适当增大REDIS_SHARED_INTEGERS参数,便可以利用共享对象节省内存空间。

(4)避免过度设计

然而需要注意的是,不论是哪种优化场景,都要考虑内存空间与设计复杂度的权衡;而设计复杂度会影响到代码的复杂度、可维护性。

如果数据量较小,那么为了节省内存而使得代码的开发、维护变得更加困难并不划算;还是以前面讲到的90000个键值对为例,实际上节省的内存空间只有几MB。但是如果数据量有几千万甚至上亿,考虑内存的优化就比较必要了。

3、关注内存碎片率

内存碎片率是一个重要的参数,对redis 内存的优化有重要意义。

如果内存碎片率过高(jemalloc在1.03左右比较正常),说明内存碎片多,内存浪费严重;这时便可以考虑重启redis服务,在内存中对数据进行重排,减少内存碎片。

如果内存碎片率小于1,说明redis内存不足,部分数据使用了虚拟内存(即swap);由于虚拟内存的存取速度比物理内存差很多(2-3个数量级),此时redis的访问速度可能会变得很慢。因此必须设法增大物理内存(可以增加服务器节点数量,或提高单机内存),或减少redis中的数据。

要减少redis中的数据,除了选用合适的数据类型、利用共享对象等,还有一点是要设置合理的数据回收策略(maxmemory-policy),当内存达到一定量后,根据不同的优先级对内存进行回收。

以上就是Redis内存模型(详解)的详细内容,更多请关注Gxlcms其它相关文章!

查看更多关于Redis内存模型(详解)的详细内容...

  阅读:56次