LUCENE.NET使用探秘
对于满足全文检索的需求来说, Lucene.Net 无疑是一个很好的选择。它引入了增量索引的策略,解决了在数据频繁改动时重建索引的问题,这对于提高web的性能至关重要(其他相关特性大家可以参看官方文档)。Lucene.Net是基于文档性的全文搜索,所以使用Lucene.Net时要把数据库中的数据先导出来,这也是一个建立索引的过程。代码如下:
1 /// <summary> 2 /// Add Data into Indexes 3 /// </summary> 4 /// <param name="models"> Data collection </param> 5 /// <param name="optimize"> Whether to optimize the indexes after adding new indexes </param> 6 public void AddToSearchIndex(IEnumerable<T> models, bool optimize = false ) 7 { 8 var analyzer = new StandardAnalyzer(Version.LUCENE_30); 9 using ( var writer = new IndexWriter(_directory,analyzer,IndexWriter.MaxFieldLength.UNLIMITED)) 10 { 11 foreach ( var model in models) 12 { 13 // remove older index entry 14 var searchQuery = new TermQuery( new Term( " Id " , (model as dynamic).ID.ToString())); 16 writer.DeleteDocuments(searchQuery); 17 18 var doc = new Document(); 19 foreach ( var prop in Props) 20 { 21 var value = prop.GetValue(model); 22 if (value == null ) 23 { 24 continue ; 25 }
26 //only store ID,we use it to retrieve model data from DB 27 doc.Add( new Field(prop.Name, value.ToString(), 28 prop.Name == " ID " ? Field.Store.YES : Field.Store.NO, 29 Field.Index.ANALYZED)); 30 } 31 writer.AddDocument(doc); 32 } 33 if (optimize) 34 { 35 writer.Optimize(); 36 } 37 } 38 }
上述函数用于把到处的数据添加到索引文件中,我们可以指定是否在完成插入后优化索引。优化索引可以提高检索速度,但会消耗Cpu资源,不建议经常优化它。另外,我们在插入索引时会先检测时更新还是添加,这用于完成对旧数据的更新。那么,如果当数据库移除了一条记录,对于索引文件我们又该如何做呢?
和数据库操作类似,当从数据库移除记录时,从所以文件中移除相应记录即可,代码如下:
/// <summary> /// Remove specfied index record /// </summary> /// <param name="record_id"> the record's ID </param> public void ClearSearchIndex( int record_id) { var analyzer = new StandardAnalyzer(Version.LUCENE_30); using ( var writer = new IndexWriter(_directory, analyzer, IndexWriter.MaxFieldLength.UNLIMITED)) { // remove older index entry var searchQuery = new TermQuery( new Term( " ID " , record_id.ToString())); writer.DeleteDocuments(searchQuery); writer.Commit(); } analyzer.Dispose(); }
同样,我们可以删除所有的索引记录
/// <summary> /// Remove all index records /// </summary> /// <returns> whether operation success or not </returns> public bool ClearAllSearchIndex() { StandardAnalyzer analyzer = null ; try { analyzer = new StandardAnalyzer(Version.LUCENE_30); using ( var writer = new IndexWriter(_directory, analyzer, true ,
IndexWriter.MaxFieldLength.UNLIMITED)) { // remove older index entries writer.DeleteAll(); writer.Commit(); } analyzer.Dispose(); } catch (Exception) { analyzer.Dispose(); return false ; } return true ; }
下面该主角登场了,看看如何检索记录吧:
/// <summary> /// Searching specfied value in all fields,or you can specfied a field to search in. /// </summary> /// <param name="querystring"> value to search </param> /// <param name="fieldname"> field to search, search all fieds at default </param> /// <returns> realted records' ID sequence </returns> public IEnumerable< int > Search( string querystring, string fieldname = "" ) { IEnumerable < int > result = new List< int > (); if ( string .IsNullOrEmpty(querystring)) { return new List< int > (); } // remove invalid characters querystring = ParseSearchString(querystring); // validation if ( string .IsNullOrEmpty(querystring.Replace( " * " , "" ).Replace( " ? " , "" ))) { return new List< int > (); } using ( var searcher = new IndexSearcher(_directory, true )) { ScoreDoc[] hits = null ; // the max hited racord count var hits_limit = 1000 ; var analyzer = new StandardAnalyzer(Version.LUCENE_30); // used to separate the querystring to match records in indexes QueryParser parser = null ; Query query = null ; if (! string .IsNullOrEmpty(fieldname)) { // create a QueryParser instance in the specified field parser = new QueryParser(Version.LUCENE_30, fieldname, analyzer); } else { string [] fields = Props.Select(p => p.Name).ToArray< string > (); // create a QueryParser instance in the all fields parser = new MultiFieldQueryParser(Version.LUCENE_30, fields, analyzer); } // create a query instance from QueryParser and querystring query = ParseQuery(querystring, parser); // get the hited record hits = searcher.Search(query, hits_limit).ScoreDocs; var resultDocs = hits.Select(hit => searcher.Doc(hit.Doc)); // transmit the index record's ID to the DB record's ID result = resultDocs.
Select(doc => ((SpecEquipmentID) int .Parse(doc.Get( " ID " ))).CurrentID).
ToList(); analyzer.Dispose(); } return result; }
从上述可以看出,我们可以指定在若干字段间搜索,这些字段间的检索同样可采用模糊检索的模式:
public IEnumerable< int > MultiFieldsSearch(Dictionary< string , string > multiFieldsDict) { IEnumerable < int > result = new List< int > (); if (multiFieldsDict.Count == 0 ) { return result; } using ( var searcher = new IndexSearcher(_directory, true )) { ScoreDoc[] hits = null ; var hits_limit = 1000 ; var analyzer = new StandardAnalyzer(Version.LUCENE_30); var occurs = ( from field in multiFieldsDict.Keys select Occur.MUST).ToArray(); var queries = ( from key in multiFieldsDict.Keys select multiFieldsDict[key]).ToArray(); Query query = MultiFieldQueryParser.Parse(Version.LUCENE_30, queries,
multiFieldsDict.Keys.ToArray(), occurs, analyzer); hits = searcher.Search(query, hits_limit).ScoreDocs; var resultDocs = hits.Select(hit => searcher.Doc(hit.Doc)); result = resultDocs.
Select(doc => ((SpecEquipmentID) int .Parse(doc.Get( " ID " ))).CurrentID).
Distinct().ToList(); analyzer.Dispose(); } return result; }
在这里解释下: 为什么用QueryParser生成Query的实例?
使用QueryParser可以让我们在指定的字段间使用模糊查询,也就是说,只要相应的记录之中包含检索值,都会被命中,这也正是全文搜索所必需的。如果不采用以上方式,可以使用BooleanQuery结合TermQuery在指定字段间搜索,但这样以来,只有同值记录(精确查询)会被命中。这些搜索条件间同样可以像数据库查询那样采用‘与或非’的形式。
最后说明一下:对于数值类型和日期类型的处理比较特殊,如果采用像字符串那样的处理方式,结果的精确性就会下降,至于如何处理针对数值类型和日期类型的数据检索,大家可以参考Lucene的官方文档。提及一下我的解决方案:我们可以采用常规数据库与Lucene结合的方式,让Lucene处理字符串类型的检索,常规数据库处理日期及数值类型的检索,各抒其长。
标签: Lucene.Net , C#
作者: Leo_wl
出处: http://www.cnblogs.com/Leo_wl/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
版权信息