好得很程序员自学网
  • 首页
  • 后端语言
    • C#
    • PHP
    • Python
    • java
    • Golang
    • ASP.NET
  • 前端开发
    • Angular
    • react框架
    • LayUi开发
    • javascript
    • HTML与HTML5
    • CSS与CSS3
    • jQuery
    • Bootstrap
    • NodeJS
    • Vue与小程序技术
    • Photoshop
  • 数据库技术
    • MSSQL
    • MYSQL
    • Redis
    • MongoDB
    • Oracle
    • PostgreSQL
    • Sqlite
    • 数据库基础
    • 数据库排错
  • CMS系统
    • HDHCMS
    • WordPress
    • Dedecms
    • PhpCms
    • 帝国CMS
    • ThinkPHP
    • Discuz
    • ZBlog
    • ECSHOP
  • 高手进阶
    • Android技术
    • 正则表达式
    • 数据结构与算法
  • 系统运维
    • Windows
    • apache
    • 服务器排错
    • 网站安全
    • nginx
    • linux系统
    • MacOS
  • 学习教程
    • 前端脚本教程
    • HTML与CSS 教程
    • 脚本语言教程
    • 数据库教程
    • 应用系统教程
  • 新技术
  • 编程导航
    • 区块链
    • IT资讯
    • 设计灵感
    • 建站资源
    • 开发团队
    • 程序社区
    • 图标图库
    • 图形动效
    • IDE环境
    • 在线工具
    • 调试测试
    • Node开发
    • 游戏框架
    • CSS库
    • Jquery插件
    • Js插件
    • Web框架
    • 移动端框架
    • 模块管理
    • 开发社区
    • 在线课堂
    • 框架类库
    • 项目托管
    • 云服务

当前位置:首页>后端语言>PHP
<tfoot draggable='sEl'></tfoot>

php大数据并发 php大数据处理思路

很多站长朋友们都不太清楚php大数据并发,今天小编就来给大家整理php大数据并发,希望对各位有所帮助,具体内容如下:

本文目录一览: 1、 php处理高并发能力强吗 2、 php 高并发解决思路解决方案 3、 为什么这么多人觉得运行PHP的并发可以上1000? 4、 php只能处理几十个并发 5、 php解决高并发 6、 PHP如何解决网站的大数据大流量与高并发 php处理高并发能力强吗

强。PHP可以解决高并发,也不能说适合,只是相对其他语言弱一些,Java和Go,不过PHP7出来以后PHP性能得到了很大的提升,性能与其它的语言之间的差距不是很大了,甚至比有的语言更快。

php 高并发解决思路解决方案

php 高并发解决思路解决方案,如何应对网站大流量高并发情况。本文为大家总结了常用的处理方式,但不是细节,后续一系列细节教程给出。希望大家喜欢。

一 高并发的概念

在互联网时代,并发,高并发通常是指并发访问。也就是在某个时间点,有多少个访问同时到来。

二 高并发架构相关概念

1、QPS (每秒查询率) : 每秒钟请求或者查询的数量,在互联网领域,指每秒响应请求数(指 HTTP 请求)

2、PV(Page View):综合浏览量,即页面浏览量或者点击量,一个访客在 24 小时内访问的页面数量

--注:同一个人浏览你的网站的同一页面,只记做一次 pv

3、吞吐量(fetches/sec) :单位时间内处理的请求数量 (通常由 QPS 和并发数决定)

4、响应时间:从请求发出到收到响应花费的时间

5、独立访客(UV):一定时间范围内,相同访客多次访问网站,只计算为 1 个独立访客

6、带宽:计算带宽需关注两个指标,峰值流量和页面的平均大小

7、日网站带宽: PV/统计时间(换算到秒) * 平均页面大小(kb)* 8

三 需要注意点:

1、QPS 不等于并发连接数(QPS 是每秒 HTTP 请求数量,并发连接数是系统同时处理的请求数量)

2、峰值每秒请求数(QPS)= (总 PV 数*80%)/ (六小时秒数*20%)【代表 80%的访问量都集中在 20%的时间内】

3、压力测试: 测试能承受的最大并发数 以及测试最大承受的 QPS 值

4、常用的性能测试工具【ab,wrk,httpload,Web Bench,Siege,Apache JMeter】

四 优化

1、当 QPS 小于 50 时

优化方案:为一般小型网站,不用考虑优化

2、当 QPS 达到 100 时,遇到数据查询瓶颈

优化方案: 数据库缓存层,数据库的负载均衡

3、当 QPS 达到 800 时, 遇到带宽瓶颈

优化方案:CDN 加速,负载均衡

4、当 QPS 达到 1000 时

优化方案: 做 html 静态缓存

5、当 QPS 达到 2000 时

优化方案: 做业务分离,分布式存储

五、高并发解决方案案例:

1、流量优化

防盗链处理(去除恶意请求)

2、前端优化

(1) 减少 HTTP 请求[将 css,js 等合并]

(2) 添加异步请求(先不将所有数据都展示给用户,用户触发某个事件,才会异步请求数据)

(3) 启用浏览器缓存和文件压缩

(4) CDN 加速

(5) 建立独立的图片服务器(减少 I/O)

3、服务端优化

(1) 页面静态化

(2) 并发处理

(3) 队列处理

4、数据库优化

(1) 数据库缓存

(2) 分库分表,分区

(3) 读写分离

(4) 负载均衡

5、web 服务器优化

(1) nginx 反向代理实现负载均衡

(2) lvs 实现负载均衡

为什么这么多人觉得运行PHP的并发可以上1000?

关键还在于nginx+php+fastcgi搭建完或搭建过程中的一些优化。

包括使用缓存加速工具,经过优化后web性能有明显的提高。这是我用压力测试工具测试的并发数量。

[root@mysql-DRBD-M webbench-1.5]# webbench -c 8000 -t 30

Webbench - Simple Web Benchmark 1.5

Copyright (c) Radim Kolar 1997-2004, GPL Open Source Software.

Benchmarking: GET

8000 clients, running 30 sec.

Speed=49520 pages/min, 189468 bytes c.

Requests: 24752 susceed, 8 failed.

kimi 17:23:04

php只能处理几十个并发

您好,PHP是一种开源的服务器端脚本语言,它可以处理数百个并发。它可以提供简单、高效、可靠的Web开发解决方案,可以满足大多数Web应用程序的需求。PHP可以支持多种数据库,如MySQL、Oracle、SQL Server等,可以支持多种流行的Web服务器,如Apache、IIS等,并且可以支持多种操作系统,如Windows、Linux等。此外,PHP还提供了丰富的类库,可以实现复杂的功能,如图像处理、文件上传、XML解析等。

php解决高并发

<?php

2 //优化方案1:将库存字段number字段设为unsigned,当库存为0时,因为字段不能为负数,将会返回false

3 include('./mysql.php');

4 $username = 'wang'.rand(0,1000);

5 //生成唯一订单

6 function build_order_no(){

7  return date('ymd').substr(implode(NULL, array_map('ord', str_split(substr(uniqid(), 7, 13), 1))), 0, 8);

8 }

9 //记录日志

10 function insertLog($event,$type=0,$username){

11    global $conn;

12    $sql="insert into ih_log(event,type,usernma)

13    values('$event','$type','$username')";

14    return mysqli_query($conn,$sql);

15 }

16 function insertOrder($order_sn,$user_id,$goods_id,$sku_id,$price,$username,$number)

17 {

18      global $conn;

19      $sql="insert into ih_order(order_sn,user_id,goods_id,sku_id,price,username,number)

20      values('$order_sn','$user_id','$goods_id','$sku_id','$price','$username','$number')";

21      return  mysqli_query($conn,$sql);

22 }

23 //模拟下单操作

24 //库存是否大于0

25 $sql="select number from ih_store where goods_id='$goods_id' and sku_id='$sku_id' ";

26 $rs=mysqli_query($conn,$sql);

27 $row = $rs->fetch_assoc();

28  if($row['number']>0){//高并发下会导致超卖

29      if($row['number']<$number){

30        return insertLog('库存不够',3,$username);

31      }

32      $order_sn=build_order_no();

33      //库存减少

34      $sql="update ih_store set number=number-{$number} where sku_id='$sku_id' and number>0";

35      $store_rs=mysqli_query($conn,$sql);

36      if($store_rs){

37          //生成订单

38          insertOrder($order_sn,$user_id,$goods_id,$sku_id,$price,$username,$number);

39          insertLog('库存减少成功',1,$username);

40      }else{

41          insertLog('库存减少失败',2,$username);

42      }

43  }else{

44      insertLog('库存不够',3,$username);

45  }

46 ?>

PHP如何解决网站的大数据大流量与高并发

使用缓存,比如memcache,redis,因为它们是在内存中运行,所以处理数据,返回数据非常快,所以可以应对高并发。

2.增加带宽和机器性能,1M的带宽同时处理的流量肯定有限,所以在资源允许的情况下,大带宽,多核cpu,高内存是一个解决方案。

3.分布式,让多个访问分到不同的机器上去处理,每个机器处理的请求就相对减少了。

简单说些常用技术,负载均衡,限流,加速器等

关于php大数据并发的介绍到此就结束了,不知道本篇文章是否对您有帮助呢?如果你还想了解更多此类信息,记得收藏关注本站,我们会不定期更新哦。

查看更多关于php大数据并发 php大数据处理思路的详细内容...

声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://www.haodehen.cn/did255205
更新时间:2023-10-09   阅读:59次

上一篇: phpajax日历 php如何生成一年的日历

下一篇:jq调用php数据 php100 jquery教程

相关资讯

最新资料更新

  • 1.phpoutfile的简单介绍
  • 2.php_syntax的简单介绍
  • 3.php提取数组转map php 数组转xml
  • 4.php正则引号 phpemail正则
  • 5.php显示字段内容 php限制显示字数
  • 6.php获取监控视频 php采集视频地址
  • 7.php字体和颜色 php字体样式代码
  • 8.海康sdk只有php 海康sdk python
  • 9.php版本怎么更新 php版本升级
  • 10.php登录和注册 php登录和注册不使用数据库
  • 11.php提取css文件 php引用css文件
  • 12.搭建分站源码php 建立分站怎么建
  • 13.仿win桌面php源码 仿windows桌面
  • 14.php接口和抽象类的区别 php抽象函数
  • 15.php语言怎么玩 php语言入门
  • 16.php生成uuid php生成随机6位数
  • 17.影视php解析api php解析vip视频
  • 18.无法下载file.php 无法下载filedownload
  • 19.phpword导出 phpspreadsheet导出
  • 20.notepad写php notepad可以写c语言吗

CopyRight:2016-2025好得很程序员自学网 备案ICP:湘ICP备09009000号-16 http://www.haodehen.cn
本站资讯不构成任何建议,仅限于个人分享,参考须谨慎!
本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。

网站内容来源于网络分享,如有侵权发邮箱到:kenbest@126.com,收到邮件我们会即时下线处理。
网站框架支持:HDHCMS   51LA统计 百度统计
Copyright © 2018-2025 「好得很程序员自学网」
[ SiteMap ]