好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

Java源码解析之可重入锁ReentrantLock

本文基于jdk1.8进行分析。

reentrantlock是一个可重入锁,在concurrenthashmap中使用了reentrantlock。

首先看一下源码中对reentrantlock的介绍。如下图。reentrantlock是一个可重入的排他锁,它和synchronized的方法和代码有着相同的行为和语义,但有更多的功能。reentrantlock是被最后一个成功lock锁并且还没有unlock的线程拥有着。如果锁没有被别的线程拥有,那么一个线程调用lock方法,就会成功获取锁并返回。如果当前线程已经拥有该锁,那么lock方法会立刻返回。这个可以通过isheldbycurrentthread方法和getholdcount方法进行验证。除了这部分介绍外,类前面的javadoc文档很长,就不在这里全部展开。随着后面介绍源码,会一一涉及到。

?

1

2

3

4

5

6

7

8

9

10

11

12

/**

  * a reentrant mutual exclusion { @link lock} with the same basic

  * behavior and semantics as the implicit monitor lock accessed using

  * { @code synchronized } methods and statements, but with extended

  * capabilities.

  * <p>a { @code reentrantlock} is <em>owned</em> by the thread last

  * successfully locking, but not yet unlocking it. a thread invoking

  * { @code lock} will return , successfully acquiring the lock, when

  * the lock is not owned by another thread. the method will return

  * immediately if the current thread already owns the lock. this can

  * be checked using methods { @link #isheldbycurrentthread}, and { @link

  * #getholdcount}.

首先看一下成员变量,如下图。reentrantlock只有一个成员变量sync,即同步器,这个同步器提供所有的机制。sync是abstractqueuedsynchronizer的子类,同时,sync有2个子类,nonfairsync和fairsync,分别是非公平锁和公平锁。sync,nonfairesync和fairsync的具体实现后面再讲。

?

1

2

/** synchronizer providing all implementation mechanics **/

private final sync sync;

下面看一下构造函数。如下图。可以看到,reentrantlock默认是非公平锁,它可以通过参数,指定初始化为公平锁或非公平锁。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

/**

  * creates an instance of {@code reentrantlock}.

  * this is equivalent to using {@code reentrantlock(false)}.

  **/

public reentrantlock() {

   sync = new nonfairsync();

}

/**

  * creates an instance of {@code reentrantlock} with the

  * given fairness policy.

  * @param fair {@code true} if this lock should use a fair ordering policy

  **/

public reentrantlock( boolean fair) {

   sync = fair ? new fairsync() : new nonfairsync();

}

下面看一下reentrantlock的主要方法。首先是lock方法。如下图。lock方法的实现很简单,就是调用sync的lock方法。而sync的lock方法是个抽象的,具体实现在nonfairsync和fairsync中。这里我们先不展开讲,而是先读一下lock方法的注释,看看它的作用。lock方法的作用是获取该锁。分为3种情况。

1,如果锁没有被别的线程占有,那么当前线程就可以获取到锁并立刻返回,并把锁计数设置为1。

2,如果当前线程已经占有该锁了,那么就会把锁计数加1,立刻返回。

3,如果锁被另一个线程占有了,那么当前线程就无法再被线程调度,并且开始睡眠,直到获取到锁,在获取到到锁时,会把锁计数设置为1。

lockinterruptibly方法与lock功能类似,但lockinterruptibly方法在等待的过程中,可以响应中断。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

/**

  * acquires the lock.

  * <p>acquires the lock if it is not held by another thread and returns

  * immediately, setting the lock hold count to one.

  * <p>if the current thread already holds the lock then the hold

  * count is incremented by one and the method returns immediately.

  * <p>if the lock is held by another thread then the

  * current thread becomes disabled for thread scheduling

  * purposes and lies dormant until the lock has been acquired,

  * at which time the lock hold count is set to one.

  **/

public void lock() {

   sync.lock();

}

public void lockinterruptibly() throws interruptedexception {

   sync.acquireinterruptibly( 1 );

}

下面,详细看一下非公平锁和公平锁中对lock函数的实现。如下图。下图同时列出了公平锁和非公平锁中lock的实现逻辑。从注释和代码逻辑中,都可以看出,非公平锁进行lock时,先尝试立刻闯入(抢占),如果成功,则获取到锁,如果失败,再执行通常的获取锁的行为,即acquire(1)。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

/**

  * 非公平锁中的lock

  * performs lock. try immediate barge, backing up to normal

  * acquire on failure.

  **/

final void lock() {

   if (compareandsetstate( 0 , 1 ))

     setexclusiveownerthread(thread.currentthread());

   else

     acquire( 1 );

}

//公平锁中的lock

final void lock() {

   acquire( 1 );

}

那么,我们首先了解下,非公平锁[尝试立刻闯入],究竟做了什么。稍后再继续讲解通常的获取锁的行为。下图是立即闯入行为compareandsetstate(0, 1)的实现。从compareandsetstate函数的注释中,可以知道,如果同步状态值与期望值相等,那么就把它的值设置为updated值。否则同步状态值与期望值不相等,则返回false。这个操作和volatile有着相同的内存语义,也就是说,这个操作对其他线程是可见的。compareandsetstate函数注释里描述的功能,是通过unsafe测试数据pareandswapint方法实现的,而unsafe测试数据pareandswapint是一个native方法,是用c++实现的。那么继续追问,c++底层是怎么实现的?c++底层是通过cas指令来实现的。什么是cas指令呢?来自维基百科的解释是,cas,比较和交换,compare and swap,是用用于实现多线程原子同步的指令。它将内存位置的内容和给定值比较,只有在相同的情况下,将该内存的值设置为新的给定值。这个操作是原子操作。那么继续追问,cas指令的原子性,是如何实现的呢?我们都知道指令时cpu来执行的,在多cpu系统中,内存是共享的,内存和多个cpu都挂在总线上,当一个cpu执行cas指令时,它会先将总线lock位点设置为高电平。如果别的cpu也要执行cas执行,它会发现总线lock位点已经是高电平了,则无法执行cas执行。cpu通过lock保证了指令的原子执行。

现在来看一下非公平锁的lock行为,compareandsetstate(0, 1),它期望锁状态为0,即没有别的线程占用,并把新状态设置为1,即标记为占用状态。如果成功,则非公平锁成功抢到锁,之后setexclusiveownerthread,把自己设置为排他线程。非公平锁这小子太坏了。如果抢占失败,则执行与公平锁相同的操作。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

/**

  * atomically sets synchronization state to the given updated

  * value if the current state value equals the expected value.

  * this operation has memory semantics of a {@code volatile} read

  * and write.

  * @param expect the expected value

  * @param update the new value

  * @return {@code true} if successful. false return indicates that the actual

  *     value was not equal to the expected value.

  **/

protected final boolean compareandsetstate( int expect, int update) {

   // see below for intrinsics setup to support this

   return unsafe测试数据pareandswapint( this , stateoffset, expect, update);

}

public final native boolean compareandswapint(object var1, long var2, int var4, int var5);

下面看一下公平锁获取锁时的行为。如下图。这部分的逻辑有些多,请阅读代码中的注释进行理解。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

/**

  * 公平锁的lock

  **/

final void lock() {

   acquire( 1 );

}

/**

  * acquires in exclusive mode, ignoring interrupts. implemented

  * by invoking at least once {@link #tryacquire},

  * returning on success. otherwise the thread is queued, possibly

  * repeatedly blocking and unblocking, invoking {@link

  * #tryacquire} until success. this method can be used

  * to implement method {@link lock#lock}.

  * @param arg the acquire argument. this value is conveyed to

  *    {@link #tryacquire} but is otherwise uninterpreted and

  *    can represent anything you like.

  **/

public final void acquire( int arg) {

   /**

    * acquire首先进行tryacquire()操作。如果tryacquire()成功时则获取到锁,即刻返回。

    * 如果tryacquire()false时,会执行acquirequeued(addwaiter(node.exclusive), arg)

    * 操作。如果acquirequeued(addwaiter(node.exclusive), arg)true时,则当前线程中断自己。

    * 如果acquirequeued(addwaiter(node.exclusive), arg)false,则返回。

    * 其中tryacquire()操作在nonfairsync中和fairsync中实现又有所区别。

    **/

   if (!tryacquire(arg) &&

       acquirequeued(addwaiter(node.exclusive), arg))

     selfinterrupt();

}

/**

  * nonfairsync中的tryacquire。

  * @param acquires

  * @return

  **/

protected final boolean tryacquire( int acquires) {

   return nonfairtryacquire(acquires);

}

/**

  * performs non-fair trylock. tryacquire is implemented in

  * subclasses, but both need nonfair try for trylock method.

  **/

final boolean nonfairtryacquire( int acquires) {

   final thread current = thread.currentthread();

   //首先获取当前同步状态值

   int c = getstate();

   if (c == 0 ) {

     //c为0,表示目前没有线程占用锁。没有线程占用锁时,当前线程尝试抢锁,如果抢锁成功,则返回true。

     if (compareandsetstate( 0 , acquires)) {

       setexclusiveownerthread(current);

       return true ;

     }

   }

   else if (current == getexclusiveownerthread()) {

     //c不等于0时表示锁被线程占用。如果是当前线程占用了,则将锁计数加上acquires,并返回true。

     int nextc = c + acquires;

     if (nextc < 0 ) // overflow

       throw new error( "maximum lock count exceeded" );

     setstate(nextc);

     return true ;

   }

   //以上情况都不是时,返回false,表示非公平抢锁失败。

   return false ;

}

/**

  * fair version of tryacquire. don't grant access unless

  * recursive call or no waiters or is first.

  * 这个是公平版本的tryacquire

  **/

protected final boolean tryacquire( int acquires) {

   final thread current = thread.currentthread();

   int c = getstate();

   if (c == 0 ) {

     //c=0时表示锁未被占用。这里是先判断队列中前面是否有别的线程。没有别的线程时,才进行cas操作。

     //公平锁之所以公平,正是因为这里。它发现锁未被占用时,首先判断等待队列中是否有别的线程已经在等待了。

     //而非公平锁,发现锁未被占用时,根本不管队列中的排队情况,上来就抢。

     if (!hasqueuedpredecessors() &&

         compareandsetstate( 0 , acquires)) {

       setexclusiveownerthread(current);

       return true ;

     }

   }

   else if (current == getexclusiveownerthread()) {

     int nextc = c + acquires;

     if (nextc < 0 )

       throw new error( "maximum lock count exceeded" );

     setstate(nextc);

     return true ;

   }

   return false ;

}

/**

  * acquires in exclusive uninterruptible mode for thread already in

  * queue. used by condition wait methods as well as acquire.

  * 当抢锁失败时,先执行addwaiter(node.exclusive),将当前线程加入等待队列,再执行该方法。

  * 该方法的作用是中断当前线程,并进行检查,知道当前线程是队列中的第一个线程,并且抢锁成功时,

  * 该方法返回。

  * @param node the node

  * @param arg the acquire argument

  * @return {@code true} if interrupted while waiting

  **/

final boolean acquirequeued( final node node, int arg) {

   boolean failed = true ;

   try {

     boolean interrupted = false ;

     for (;;) {

       final node p = node.predecessor();

       if (p == head && tryacquire(arg)) {

         sethead(node);

         p.next = null ; // help gc

         failed = false ;

         return interrupted;

       }

       if (shouldparkafterfailedacquire(p, node) &&

           parkandcheckinterrupt())

         interrupted = true ;

     }

   } finally {

     if (failed)

       cancelacquire(node);

   }

}

接下来是trylock方法。代码如下。从注释中我们可以理解到,只有当调用trylock时锁没有被别的线程占用,trylock才会获取锁。如果锁没有被另一个线程占用,那么就获取锁,并立刻返回true,并把锁计数设置为1. 甚至在锁被设置为公平排序的情况下,若果锁可用,调用trylock会立刻获取锁,而不管有没有别的线程在等待锁了。从这里我们总结出,不管可重入锁是公平锁还是非公平锁,trylock方法只会是非公平的。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

/**

    * acquires the lock only if it is not held by another thread at the time

    * of invocation.

    * <p>acquires the lock if it is not held by another thread and

    * returns immediately with the value {@code true}, setting the

    * lock hold count to one. even when this lock has been set to use a

    * fair ordering policy, a call to {@code trylock()} <em>will</em>

    * immediately acquire the lock if it is available, whether or not

    * other threads are currently waiting for the lock.

    * this "barging" behavior can be useful in certain

    * circumstances, even though it breaks fairness. if you want to honor

    * the fairness setting for this lock, then use

    * {@link #trylock(long, timeunit) trylock(0, timeunit.seconds) }

    * which is almost equivalent (it also detects interruption).

    * <p>if the current thread already holds this lock then the hold

    * count is incremented by one and the method returns {@code true}.

    * <p>if the lock is held by another thread then this method will return

    * immediately with the value {@code false}.

    * @return {@code true} if the lock was free and was acquired by the

    *     current thread, or the lock was already held by the current

    *     thread; and {@code false} otherwise

    **/

   public boolean trylock() {

     return sync.nonfairtryacquire( 1 );

   }

   public boolean trylock( long timeout, timeunit unit)

       throws interruptedexception {

     return sync.tryacquirenanos( 1 , unit.tonanos(timeout));

   }

接下来是释放锁的方法unlock。代码如下。unlock方式的实现,是以参数1来调用sync.release方法。而release方法是如何实现的呢?release方法首先会调用tryrelease方法,如果tryrelease成功,则唤醒后继者线程。而tryrelease的实现过程十分清晰,首先获取锁状态,锁状态减去参数(放锁次数),得到新状态。然后判断持有锁的线程是否为当前线程,如果不是当前线程,则抛出illegalmonitorstateexception。然后判断,如果新状态为0,说明放锁成功,则把持有锁的线程设置为null,并返回true。如果新状态不为0,则返回false。从tryrelease的返回值来看,它返回的true或false,指的是否成功的释放了该锁。成功的释放该锁的意思是彻底释放锁,别的线程就可以获取锁了。这里要认识到,即便tryrelease返回false,它也只是说明了锁没有完全释放,本次调用的这个释放次数值,依然是释放成功的。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

/**

  * attempts to release this lock.

  * <p>if the current thread is the holder of this lock then the hold

  * count is decremented. if the hold count is now zero then the lock

  * is released. if the current thread is not the holder of this

  * lock then {@link illegalmonitorstateexception} is thrown.

  * @throws illegalmonitorstateexception if the current thread does not

  *     hold this lock

  **/

public void unlock() {

   sync.release( 1 );

}

/**

  * releases in exclusive mode. implemented by unblocking one or

  * more threads if {@link #tryrelease} returns true.

  * this method can be used to implement method {@link lock#unlock}.

  * @param arg the release argument. this value is conveyed to

  *    {@link #tryrelease} but is otherwise uninterpreted and

  *    can represent anything you like.

  * @return the value returned from {@link #tryrelease}

  **/

public final boolean release( int arg) {

   if (tryrelease(arg)) {

     node h = head;

     if (h != null && h.waitstatus != 0 )

       unparksuccessor(h);

     return true ;

   }

   return false ;

}

protected final boolean tryrelease( int releases) {

     int c = getstate() - releases;

     if (thread.currentthread() != getexclusiveownerthread())

       throw new illegalmonitorstateexception();

     boolean free = false ;

     if (c == 0 ) {

       free = true ;

       setexclusiveownerthread( null );

     }

     setstate(c);

     return free;

   }

/**

  * wakes up node's successor, if one exists.

  * @param node the node

  **/

private void unparksuccessor(node node) {

   /**

    * if status is negative (i.e., possibly needing signal) try

    * to clear in anticipation of signalling. it is ok if this

    * fails or if status is changed by waiting thread.

    **/

   int ws = node.waitstatus;

   if (ws < 0 )

     compareandsetwaitstatus(node, ws, 0 );

   /**

    * thread to unpark is held in successor, which is normally

    * just the next node. but if cancelled or apparently null,

    * traverse backwards from tail to find the actual

    * non-cancelled successor.

    **/

   node s = node.next;

   if (s == null || s.waitstatus > 0 ) {

     s = null ;

     for (node t = tail; t != null && t != node; t = t.prev)

       if (t.waitstatus <= 0 )

         s = t;

   }

   if (s != null )

     locksupport.unpark(s.thread);

}

接下来是newcondition方法。关于condition这里不展开介绍,只是了解下该方法的作用。如下图。该方法返回一个和这个锁实例一起使用的condition实例。返回的condition实例支持和object的监控方法例如wait-notify和notifyall相同的用法。

1,如果没有获取锁,调用condition的await,signal,signalall方法的任何一个时,会抛出illegalmonitorstateexception异常。 2,调用condition的await方法时,锁也会释放,在await返回之前,锁会被重新获取,并且锁计数会恢复到调用await方法时的值。 3,如果一个线程在等待的过程中被中断了,那么等待就会结束,并抛出interruptedexception异常,线程的中断标志位会被清理。 4,等待的线程以fifo的顺序被唤醒。 5,从await方法返回的线程们的获取到锁的顺序,和线程最开始获取锁的顺序相同,这是未指定情况下的默认实现。但是,公平锁更钟爱那些已经等待了最长时间的线程。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

/**

  * returns a {@link condition} instance for use with this

  * {@link lock} instance.

  * <p>the returned {@link condition} instance supports the same

  * usages as do the {@link object} monitor methods ({@link

  * object#wait() wait}, {@link object#notify notify}, and {@link

  * object#notifyall notifyall}) when used with the built-in

  * monitor lock.

  * <ul>

  * <li>if this lock is not held when any of the {@link condition}

  * {@linkplain condition#await() waiting} or {@linkplain

  * condition#signal signalling} methods are called, then an {@link

  * illegalmonitorstateexception} is thrown.

  * <li>when the condition {@linkplain condition#await() waiting}

  * methods are called the lock is released and, before they

  * return, the lock is reacquired and the lock hold count restored

  * to what it was when the method was called.

  * <li>if a thread is {@linkplain thread#interrupt interrupted}

  * while waiting then the wait will terminate, an {@link

  * interruptedexception} will be thrown, and the thread's

  * interrupted status will be cleared.

  * <li> waiting threads are signalled in fifo order.

  * <li>the ordering of lock reacquisition for threads returning

  * from waiting methods is the same as for threads initially

  * acquiring the lock, which is in the default case not specified,

  * but for <em>fair</em> locks favors those threads that have been

  * waiting the longest.

  * </ul>

  * @return the condition object

  **/

public condition newcondition() {

   return sync.newcondition();

}

可重入锁还有一些其他的方法,这里就不一一介绍了。this is the end.

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接

原文链接:https://blog.csdn.net/li_canhui/article/details/85006114

查看更多关于Java源码解析之可重入锁ReentrantLock的详细内容...

  阅读:13次