1.描述:找出数组A的和最大的非空连续子数组,我们称这样的连续子数组为最大子数组。
2. 用分治策略来求解。
a. 假设我们要求A的子数组A[low, high]的最大子数组。根据分治策略,我们先将A[low,high] 平分
b. 那么 A[low,highj]的子数组A[i,j]只有三种可能
a)完全位于A[low, mid]; 此时 low <= i <= j <= mid
b) 完全位于A[nid+1, high]中,此时 mid + 1 <= i <= j <= high
c) 跨越了中点mid, 此时 low <= i <= mid < j < high
3. 伪代码
FIND-MAXIMUM- SUBARRAY(A, low, high) if high == low return (low, high. A[low]) // 只有一个元素 else mid = (low + high)/ 2 // 向下取整 (left-low, left-high, left- sum ) = FIND-MAXIMUM- SUBARRAY(A, low, mid) (right -low, right-high, right- sum ) = FIND-MAXIMUM-SUBARRAY(A, mid + 1 , high) (cross -low, cross-high, cross- sum ) = FIND-MAX-CROSSING- SUBARRAY(A, low, mid, high) if left- sum >= right- sum and left- sum >= cross- sum return (left -low, left-high, left- sum ) else if right- sum >= left- sum and right- sum >= cross- sum return (right -low, right-high, right- sum ) return (cross -low, cross-high, cross- sum ) FIND -MAX-CROSSING- SUBARRAY(A, low, mid, high) left - sum = - ∞ sum = 0 for i = mid downto low sum = sum + A[i] if sum > left- sum left - sum = sum max -left = i right - sum = - ∞ sum = 0 ; for j = mid + 1 to high sum = sum + A[j] if sum > right- sum right - sum = sum max -right = j return (max -left, max-right, left- sum + right- sum )
4. 分析
我之前说过,所有的比较最后都是两个数比较。把最大子数组通过分治策略最后都是一个元素,这时候就是直接返回这个数,交给上一层。
这时候数组有两个数,子数组就到了2所说的比较三种情况,再一层层向上递交结果
5. 代码实现
java
public class MaxArray { private static class Result { int low; int high; int sum; public Result( int low, int high, int sum) { this .low = low; this .high = high; this .sum = sum; } } static Result findMaximumSubarray( int [] A, int low, int high) { if (low == high) { return new Result(low, high, A[low]); } else { int mid = (low + high)/2 ; Result leftResult = findMaximumSubarray(A, low, mid); Result rightResult = findMaximumSubarray(A, mid+1 , high); Result crossResult = findMaxCrossingSubarray(A, low, mid, high); if (leftResult.sum >= rightResult.sum && leftResult.sum >= crossResult.sum) return leftResult; else if (rightResult.sum >= leftResult.sum && rightResult.sum >= crossResult.sum) return rightResult; else return crossResult; } } static Result findMaxCrossingSubarray( int [] A, int low, int mid, int high) { // 向左试探 int leftSum = Integer.MIN_VALUE; // 哨兵 int maxLeft = mid; int sum = 0 ; for ( int i = mid; i >= low; i-- ) { sum += A[i]; if (sum > leftSum) { leftSum = sum; maxLeft = i; } } // 向右试探 int rightSum = Integer.MIN_VALUE; int maxRight = mid + 1 ; sum = 0 ; for ( int j = mid + 1; j <= high; j++ ) { sum += A[j]; if (sum > rightSum) { rightSum = sum; maxRight = j; } } // 将两边的结果合起来 return new Result(maxLeft, maxRight, leftSum + rightSum); } public static void main(String[] args) { int [] A = {-1, 5, 6, 9, 10, -9, -8, 100, -200 }; Result result = findMaximumSubarray(A, 0, A.length-1 ); System.out.println(result.low + "," + result.high + " " + result.sum); } }
python
def find_maximum_subarray(nums, low, high): if low == high: return { " low " : low, " high " : high, " sum " : nums[low]} else : mid = int((low + high) / 2 ) left_result = find_maximum_subarray(nums, low, mid) right_result = find_maximum_subarray(nums, mid + 1 , high) cross_result = find_max_crossing_subarray(nums, low, mid, high) if left_result[ " sum " ] >= right_result[ " sum " ] and left_result[ " sum " ] >= cross_result[ " sum " ]: return left_result else : if right_result[ " sum " ] >= left_result[ " sum " ] and right_result[ " sum " ] >= cross_result[ " sum " ]: return right_result else : return cross_result def find_max_crossing_subarray(nums, low, mid, high): left_sum = -float( ' inf ' ) total = 0 max_left = mid for i in range(mid, low-1, -1 ): total += nums[i] if total > left_sum: left_sum = total max_left = i rigth_sum = -float( ' inf ' ) total = 0 max_right = mid + 1 for j in range(mid+1, high+1 ): total += nums[j] if total > rigth_sum: rigth_sum = total max_right = j return { " low " : max_left, " high " : max_right, " sum " : left_sum + rigth_sum} if __name__ == " __main__ " : numss = [-1, 5, 6, 9, 10, -9, -8, 100, -200 ] result = find_maximum_subarray(numss, 0, len(numss)-1 ) print (result)
再分享个python用切片的方法
def find_maximum_subarray_slice(nums): max_sum = -float( ' inf ' ) result = {} for i in range(len(nums)+1 ): for j in range(i, len(nums)+1 ): total = sum(nums[i:j]) if total > max_sum: max_sum = total result[ " low " ] = i result[ " high " ] = j-1 result[ " sum " ] = max_sum return result
C语言
typedef struct { int low; int high; int sum; }result; result find_maximum_subarray( int [], int , int ); result find_max_crossing_subarray( int [], int , int , int ); int main() { int arr[] = {- 1 , 5 , 6 , 9 , 10 , - 9 , - 8 , 100 , - 200 }; result re = find_maximum_subarray(arr, 0 , 8 ); printf( " %d, %d, %d\n " , re.low, re.high, re.sum); return 0 ; } result find_maximum_subarray( int arr[], int low, int high) { if (low == high) { result re; re.low = low; re.high = high; re.sum = arr[low]; return re; } else { int mid = (low + high) / 2 ; result left_result = find_maximum_subarray(arr, low, mid); result right_result = find_maximum_subarray(arr, mid + 1 , high); result cross_result = find_max_crossing_subarray(arr, low, mid, high); if (left_result.sum >= right_result.sum && left_result.sum >= cross_result.sum) return left_result; else if (right_result.sum >= left_result.sum && right_result.sum >= cross_result.sum) return right_result; else return cross_result; } } result find_max_crossing_subarray( int arr[], int low, int mid, int high) { int left_sum = -((unsigned)(~ 0 ) >> 1 ); // 设置哨兵 int sum = 0 ; int i, max_left; for (i = mid; i >= low; i-- ) { sum += arr[i]; if (sum > left_sum) { left_sum = sum; max_left = i; } } int right_sum = -((unsigned)(~ 0 ) >> 1 ); sum = 0 ; int j, max_right; for (j = mid+ 1 ; j <= high; j++ ) { sum += arr[j]; if (sum > right_sum) { right_sum = sum; max_right = j; } } result re; re.low = max_left; re.high = max_right; re.sum = left_sum + right_sum; return re; }
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://www.haodehen.cn/did238219