好得很程序员自学网
  • 首页
  • 后端语言
    • C#
    • PHP
    • Python
    • java
    • Golang
    • ASP.NET
  • 前端开发
    • Angular
    • react框架
    • LayUi开发
    • javascript
    • HTML与HTML5
    • CSS与CSS3
    • jQuery
    • Bootstrap
    • NodeJS
    • Vue与小程序技术
    • Photoshop
  • 数据库技术
    • MSSQL
    • MYSQL
    • Redis
    • MongoDB
    • Oracle
    • PostgreSQL
    • Sqlite
    • 数据库基础
    • 数据库排错
  • CMS系统
    • HDHCMS
    • WordPress
    • Dedecms
    • PhpCms
    • 帝国CMS
    • ThinkPHP
    • Discuz
    • ZBlog
    • ECSHOP
  • 高手进阶
    • Android技术
    • 正则表达式
    • 数据结构与算法
  • 系统运维
    • Windows
    • apache
    • 服务器排错
    • 网站安全
    • nginx
    • linux系统
    • MacOS
  • 学习教程
    • 前端脚本教程
    • HTML与CSS 教程
    • 脚本语言教程
    • 数据库教程
    • 应用系统教程
  • 新技术
  • 编程导航
    • 区块链
    • IT资讯
    • 设计灵感
    • 建站资源
    • 开发团队
    • 程序社区
    • 图标图库
    • 图形动效
    • IDE环境
    • 在线工具
    • 调试测试
    • Node开发
    • 游戏框架
    • CSS库
    • Jquery插件
    • Js插件
    • Web框架
    • 移动端框架
    • 模块管理
    • 开发社区
    • 在线课堂
    • 框架类库
    • 项目托管
    • 云服务

当前位置:首页>后端语言>PHP
<tfoot draggable='sEl'></tfoot>

php操作kafka php操作数据库实验心得

很多站长朋友们都不太清楚php操作kafka,今天小编就来给大家整理php操作kafka,希望对各位有所帮助,具体内容如下:

本文目录一览: 1、 大型的PHP应用,通常使用什么应用做消息队列? 2、 thinkphp,kafka,hbase,spark之间的通讯机制怎么来实现 3、 PHP开发人员的Python基础知识 4、 消息中间件Kafka - PHP操作使用Kafka 大型的PHP应用,通常使用什么应用做消息队列?

一、消息队列概述

消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。实现高性能,高可用,可伸缩和最终一致性架构。是大型分布式系统不可缺少的中间件。

目前在生产环境,使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。

二、消息队列应用场景

以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。

2.1异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种1.串行的方式;2.并行方式。

(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。(架构KKQ:466097527,欢迎加入)

(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。

假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。

因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)。

小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。

2.2应用解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:

传统模式的缺点:

1) 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败;

2) 订单系统与库存系统耦合;

如何解决以上问题呢?引入应用消息队列后的方案,如下图:

订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。

库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。

假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。

2.3流量削锋

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

可以控制活动的人数;

可以缓解短时间内高流量压垮应用;

用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面;

秒杀业务根据消息队列中的请求信息,再做后续处理。

2.4日志处理

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:

日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;

Kafka消息队列,负责日志数据的接收,存储和转发;

日志处理应用:订阅并消费kafka队列中的日志数据;

以下是新浪kafka日志处理应用案例:

(1)Kafka:接收用户日志的消息队列。

(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch。

(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。

(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。

2.5消息通讯

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。

点对点通讯:

客户端A和客户端B使用同一队列,进行消息通讯。

聊天室通讯:

客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。

三、消息中间件示例

3.1电商系统

消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。(1)应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)

(2)扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理。

(3)消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。

3.2日志收集系统

分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。

Zookeeper注册中心,提出负载均衡和地址查找服务;

日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列;

四、JMS消息服务

讲消息队列就不得不提JMS 。JMS(Java Message Service,Java消息服务)API是一个消息服务的标准/规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。

在EJB架构中,有消息bean可以无缝的与JM消息服务集成。在J2EE架构模式中,有消息服务者模式,用于实现消息与应用直接的解耦。

4.1消息模型

在JMS标准中,有两种消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。

4.1.1 P2P模式

P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。

P2P的特点

每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)

发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列

接收者在成功接收消息之后需向队列应答成功

如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。(架构KKQ:466097527,欢迎加入)

4.1.2 Pub/sub模式

包含三个角色主题(Topic),发布者(Publisher),订阅者(Subscriber) 。多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。

Pub/Sub的特点

每个消息可以有多个消费者

发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息。

为了消费消息,订阅者必须保持运行的状态。

为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。

如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。

4.2消息消费

在JMS中,消息的产生和消费都是异步的。对于消费来说,JMS的消息者可以通过两种方式来消费消息。

(1)同步

订阅者或接收者通过receive方法来接收消息,receive方法在接收到消息之前(或超时之前)将一直阻塞;

(2)异步

订阅者或接收者可以注册为一个消息监听器。当消息到达之后,系统自动调用监听器的onMessage方法。

JNDI:Java命名和目录接口,是一种标准的Java命名系统接口。可以在网络上查找和访问服务。通过指定一个资源名称,该名称对应于数据库或命名服务中的一个记录,同时返回资源连接建立所必须的信息。

JNDI在JMS中起到查找和访问发送目标或消息来源的作用。(架构KKQ:466097527,欢迎加入)

4.3JMS编程模型

(1) ConnectionFactory

创建Connection对象的工厂,针对两种不同的jms消息模型,分别有QueueConnectionFactory和TopicConnectionFactory两种。可以通过JNDI来查找ConnectionFactory对象。

(2) Destination

Destination的意思是消息生产者的消息发送目标或者说消息消费者的消息来源。对于消息生产者来说,它的Destination是某个队列(Queue)或某个主题(Topic);对于消息消费者来说,它的Destination也是某个队列或主题(即消息来源)。

所以,Destination实际上就是两种类型的对象:Queue、Topic可以通过JNDI来查找Destination。

(3) Connection

Connection表示在客户端和JMS系统之间建立的链接(对TCP/IP socket的包装)。Connection可以产生一个或多个Session。跟ConnectionFactory一样,Connection也有两种类型:QueueConnection和TopicConnection。

(4) Session

Session是操作消息的接口。可以通过session创建生产者、消费者、消息等。Session提供了事务的功能。当需要使用session发送/接收多个消息时,可以将这些发送/接收动作放到一个事务中。同样,也分QueueSession和TopicSession。

(5) 消息的生产者

消息生产者由Session创建,并用于将消息发送到Destination。同样,消息生产者分两种类型:QueueSender和TopicPublisher。可以调用消息生产者的方法(send或publish方法)发送消息。

(6) 消息消费者

消息消费者由Session创建,用于接收被发送到Destination的消息。两种类型:QueueReceiver和TopicSubscriber。可分别通过session的createReceiver(Queue)或createSubscriber(Topic)来创建。当然,也可以session的creatDurableSubscriber方法来创建持久化的订阅者。

(7) MessageListener

消息监听器。如果注册了消息监听器,一旦消息到达,将自动调用监听器的onMessage方法。EJB中的MDB(Message-Driven Bean)就是一种MessageListener。

深入学习JMS对掌握JAVA架构,EJB架构有很好的帮助,消息中间件也是大型分布式系统必须的组件。本次分享主要做全局性介绍,具体的深入需要大家学习,实践,总结,领会。

五、常用消息队列

一般商用的容器,比如WebLogic,JBoss,都支持JMS标准,开发上很方便。但免费的比如Tomcat,Jetty等则需要使用第三方的消息中间件。本部分内容介绍常用的消息中间件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他们的特点。

5.1 ActiveMQ

ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线。ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,但是JMS在当今的J2EE应用中间仍然扮演着特殊的地位。

ActiveMQ特性如下:

⒈ 多种语言和协议编写客户端。语言: Java,C,C++,C#,Ruby,Perl,Python,PHP。应用协议: OpenWire,Stomp REST,WS Notification,XMPP,AMQP

⒉ 完全支持JMS1.1和J2EE 1.4规范 (持久化,XA消息,事务)

⒊ 对spring的支持,ActiveMQ可以很容易内嵌到使用Spring的系统里面去,而且也支持Spring2.0的特性

⒋ 通过了常见J2EE服务器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的测试,其中通过JCA 1.5 resource adaptors的配置,可以让ActiveMQ可以自动的部署到任何兼容J2EE 1.4 商业服务器上

⒌ 支持多种传送协议:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA

⒍ 支持通过JDBC和journal提供高速的消息持久化

⒎ 从设计上保证了高性能的集群,客户端-服务器,点对点

⒏ 支持Ajax

⒐ 支持与Axis的整合

⒑ 可以很容易得调用内嵌JMS provider,进行测试

5.2 RabbitMQ

RabbitMQ是流行的开源消息队列系统,用erlang语言开发。RabbitMQ是AMQP(高级消息队列协议)的标准实现。支持多种客户端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。

几个重要概念:

Broker:简单来说就是消息队列服务器实体。

Exchange:消息交换机,它指定消息按什么规则,路由到哪个队列。

Queue:消息队列载体,每个消息都会被投入到一个或多个队列。

Binding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来。

Routing Key:路由关键字,exchange根据这个关键字进行消息投递。

vhost:虚拟主机,一个broker里可以开设多个vhost,用作不同用户的权限分离。

producer:消息生产者,就是投递消息的程序。

consumer:消息消费者,就是接受消息的程序。

channel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务。

消息队列的使用过程,如下:

(1)客户端连接到消息队列服务器,打开一个channel。

(2)客户端声明一个exchange,并设置相关属性。

(3)客户端声明一个queue,并设置相关属性。

(4)客户端使用routing key,在exchange和queue之间建立好绑定关系。

(5)客户端投递消息到exchange。

exchange接收到消息后,就根据消息的key和已经设置的binding,进行消息路由,将消息投递到一个或多个队列里。

5.3 ZeroMQ

号称史上最快的消息队列,它实际类似于Socket的一系列接口,他跟Socket的区别是:普通的socket是端到端的(1:1的关系),而ZMQ却是可以N:M 的关系,人们对BSD套接字的了解较多的是点对点的连接,点对点连接需要显式地建立连接、销毁连接、选择协议(TCP/UDP)和处理错误等,而ZMQ屏蔽了这些细节,让你的网络编程更为简单。ZMQ用于node与node间的通信,node可以是主机或者是进程。

引用官方的说法: “ZMQ(以下ZeroMQ简称ZMQ)是一个简单好用的传输层,像框架一样的一个socket library,他使得Socket编程更加简单、简洁和性能更高。是一个消息处理队列库,可在多个线程、内核和主机盒之间弹性伸缩。ZMQ的明确目标是“成为标准网络协议栈的一部分,之后进入Linux内核”。现在还未看到它们的成功。但是,它无疑是极具前景的、并且是人们更加需要的“传统”BSD套接字之上的一 层封装。ZMQ让编写高性能网络应用程序极为简单和有趣。”

特点是:

高性能,非持久化;

跨平台:支持Linux、Windows、OS X等。

多语言支持; C、C++、Java、.NET、Python等30多种开发语言。

可单独部署或集成到应用中使用;

可作为Socket通信库使用。

与RabbitMQ相比,ZMQ并不像是一个传统意义上的消息队列服务器,事实上,它也根本不是一个服务器,更像一个底层的网络通讯库,在Socket API之上做了一层封装,将网络通讯、进程通讯和线程通讯抽象为统一的API接口。支持“Request-Reply “,”Publisher-Subscriber“,”Parallel Pipeline”三种基本模型和扩展模型。

ZeroMQ高性能设计要点:

1、无锁的队列模型

对于跨线程间的交互(用户端和session)之间的数据交换通道pipe,采用无锁的队列算法CAS;在pipe两端注册有异步事件,在读或者写消息到pipe的时,会自动触发读写事件。

2、批量处理的算法

对于传统的消息处理,每个消息在发送和接收的时候,都需要系统的调用,这样对于大量的消息,系统的开销比较大,zeroMQ对于批量的消息,进行了适应性的优化,可以批量的接收和发送消息。

3、多核下的线程绑定,无须CPU切换

区别于传统的多线程并发模式,信号量或者临界区, zeroMQ充分利用多核的优势,每个核绑定运行一个工作者线程,避免多线程之间的CPU切换开销。

5.4 Kafka

Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。

Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。(文件追加的方式写入数据,过期的数据定期删除)

高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。

支持通过Kafka服务器和消费机集群来分区消息。

支持Hadoop并行数据加载。

Kafka相关概念

Broker

Kafka集群包含一个或多个服务器,这种服务器被称为broker[5]

Topic

每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)

Partition

Parition是物理上的概念,每个Topic包含一个或多个Partition.

Producer

负责发布消息到Kafka broker

Consumer

消息消费者,向Kafka broker读取消息的客户端。

Consumer Group

每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。

一般应用在大数据日志处理或对实时性(少量延迟),可靠性(少量丢数据)要求稍低的场景使用。

thinkphp,kafka,hbase,spark之间的通讯机制怎么来实现

Spark 有自己的 Kafka connector 用于从Kafka读出读入数据。

Spark 到 Hbase 很多人就用一个foreach operator来写数据。

PHP开发人员的Python基础知识

PHP(外文名:PHP: Hypertext Preprocessor,中文名:“超文本预处理器”)是一种通用开源脚本语言。语法吸收了C语言、Java和Perl的特点,利于学习,使用广泛,主要适用于Web开发领域。那么PHP开发人员的Python基础知识都有哪些呢?以下仅供参考!

常用缩略语

Ajax:异步 JavaScript + XML

XML:可扩展标记语言(Extensible Markup Language)

什么是 Python?

Python 的定义是一种 “通用的高级编程语言”。它以简洁性和易用性著称,而且是少有的几种对空格和缩进有要求的语言之一。Python 的主要作者 Guido Van Rossum 在社区中仍然非常活跃,并且被人们戏称为仁慈的领导。

Python 的灵活性和紧凑性是值得称赞的。它支持面向对象编程、结构化编程、面向方面编程以及函数编程等。Python 采用小内核设计,但具备大量扩展库,从而确保了该语言的紧凑性和灵活性。

从语法的角度来说,您会发现 Python 的简洁性异常突出——几乎可以说是一种纯粹的境界。PHP 开发人员要么会对这种方法的语法深深陶醉,要么会发现它的局限性。这主要取决于您自己的见解。Python 社区推动这种美感的态度是非常明确的,它们更加重视的是美学和简洁性,而不是灵动的技巧。已形成 Perl 传统(“可以通过多种方式实现它”)的 PHP 开发人员(像我自己)将面对一种完全相反的哲学(“应该只有一种方法可以实现它”)。

事实上,该社区定义了一种特有的代码风格术语,即 Python 化(pythonic)。您可以说您的代码是 Python 化,这是对 Python 术语的良好运用,同时还可展现语言的自然特性。本文并不打算成为 Pythonista(或 Pythoneer),但如果您想继续 Python 之路,那么千万不能错过本文的知识点。就像 PHP 有自己的编程风格,Perl 有自己的概念方法,学习 Python 语言必然也需要开始用该语言来思考问题。

另一个要点:在撰写本文时,Python 的最新版本是 V3.0,但本文主要侧重于 Python V2.6。Python V3.0 并不能向后兼容之前的版本,而且 V2.6 是使用最为广泛的版本。当然,您可以根据需求使用自己喜好的版本。

Python 与 PHP 有何不同?

一般来说,PHP 是一种 Web 开发语言。是的,它提供了一个命令行接口,并且甚至可用于开发嵌入式应用程序,但它主要还是用于 Web 开发。相反,Python 是一种脚本语言,并且也可用于 Web 开发。从这方面来说,我知道我会这样说——它比 PHP 更加接近 Perl。(当然,在其他方面,它们之间并无实际不同。我们继续往下看。)

PHP 的语法中充斥着美元符号($)和大括号({}),而 Python 相对来说则更加简洁和干净。PHP 支持 switch 和 do...while 结构,而 Python 则不尽然。PHP 使用三元操作符(foo?bar:baz)和冗长的函数名列表,而命名约定更是无所不有;相反,您会发现 Python 要简洁多了。PHP 的数组类型可同时支持简单列表和字典或散列,但 Python 却将这两者分开。

Python 同时使用可变性和不变性的概念:举例来说,tuple 就是一个不可变的列表。您可以创建 tuple,但在创建之后不能修改它。这一概念可能要花些时间来熟悉,但对于避免错误极为有效。当然,更改 tuple 的惟一方法是复制它。因此,如果您发现对不可变对象执行了大量更改,则应该重新考量自己的方法。

之前提到,Python 中的缩进是有含义的:您在刚开始学习该语言时会对此非常难以适应。您还可以创建使用关键字作为参数的函数和方法——这与 PHP 中的标准位置参数迥然不同。面向对象的追随者会对 Python 中真正的面向对象思想感到欣喜,当然还包括它的 “一级” 类和函数。如果您使用非英语语言,则会钟爱于 Python 强大的.国际化和 Unicode 支持。您还会喜欢 Python 的多线程功能;这也是最开始令我为之着迷的特性之一。

综上所述,PHP 和 Python 在许多方面都彼此类似。您可以方便地创建变量、循环,使用条件和创建函数。您甚至可以轻松地创建可重用的模块。两种语言的用户社区都充满活力和激情。PHP 的用户群体更加庞大,但这主要归因于它在托管服务器及 Web 专注性方面的优势和普及性。

很好 简要介绍到此为止。我们开始探索之旅。

使用 Python

清单 1 展示了一个基本的 Python 脚本。

清单 1. 一个简单的 Python 脚本

for i in range(20):

print(i)

清单 2 展示了脚本的必然结果。

清单 2. 清单 1 的结果

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

在深入探索之前,我们先来了解一些预备知识。首先从变量开始。

变量

可以看到,表示变量并不需要任何特殊的字符。变量 i 就是一个纯粹的 i——毫无特殊之处。表示代码块或语言结束也不需要任何特殊字符(比如分号和括号);只需要在 for 行使用一个简单的冒号即可(:)。还需注意,缩进会向 Python 指示哪些内容属于 for 循环。举例来说,清单 3 中的代码会在循环中为各编号输出一个说明。

清单 3. 为各循环添加一条语句

for i in range(20):

print(i)

print('all done?')

相反,清单 4 中的代码会在循环结束处输出一条说明。

清单 4. 在循环后添加一条语句

for i in range(20):

print(i)

print('all done!')

现在,我第一次看到这样的代码时,我认为这完全是无稽之谈。什么?让我相信换行和缩进能保证代码的结构和运行?请相信我,不用多久,您就会习惯它(但我需要承认必须到达到分号处才会结束语句的运行)。如果您与其他开发人员共同开发 Python 项目,则会发现这种可读性的用处是多么大了。您不再像以前那样总是猜测 “这个聪明的家伙在这里究竟想干些什么?”

在 PHP,您使用 = 操作符为变量分配值(参见 清单 5)。在 Python 中,您使用相同的操作符,只是需要标记或指向值。对于我来说,它就是赋值操作而已,我不需要过多担心专门的术语。

清单 5. 创建变量

yorkie = 'Marlowe' #meet our Yorkie Marlowe!

mutt = 'Kafka'  #meet our mutt Kafka

print(mutt) #prints Kafka

Python 的变量名称约定与 PHP 类似:您在创建变量名时只能使用字母、数字和下划线(_)。同样,变量名的第一个字符不能是数字。Python 变量名是区分大小写的,并且您不能使用特定的 Python 关键字(比如 if、else、while、def、or、and、not、in 和 is 开始符)作为变量名。这没有什么值得奇怪的。

Python 允许您随意执行基于字符串的操作。清单 6 中的大多数操作应该都是您熟悉的。

清单 6. 常见的基于字符串的操作

yorkie = 'Marlowe'

mutt = 'Kafka'

ylen = len(yorkie) #length of variable yorkie

print(ylen) #prints 7

print(len(yorkie)) #does the same thing

len(yorkie) #also does the same thing, print is implicit

print(yorkie.lower()) #lower cases the string

print(yorkie.strip('aeiou')) #removes vowels from end of string

print(mutt.split('f')) #splits "Kafka" into ['Ka', 'ka']

print(mutt.count('a')) #prints 2, the number of a's in string

yorkie.replace('a','4') #replace a's with 4's

条件语句

您已经了解了如何使用 for 循环;现在,我们来讨论条件语句。您会发现 Phyon 中的条件语句与 PHP 基本相同:您可以使用熟悉的 if/else型结构,如清单 7 所示。

清单 7. 一个简单的条件测试

yorkie = 'Marlowe'

mutt = 'Kafka'

if len(yorkie) > len(mutt):

print('The yorkie wins!')

else:

print('The mutt wins!')

您还可以使用 if/elif/else(elif,等价于 PHP 中的 elseif)创建更加复杂的条件测试,如清单 8 所示。

清单 8. 一个比较复杂的条件测试

yorkie = 'Marlowe'

mutt = 'Kafka'

if len(yorkie) + len(mutt) > 15:

print('The yorkie and the mutt win!')

elif len(yorkie) + len(mutt) > 10:

print('Too close to tell!')

else:

print('Nobody wins!')

您可能会说,目前为止并没有什么与众不同的地方:甚本上和想像中没有太大区别。现在,我们来看 Python 处理列表的方式,您会发现两种语言之间的不同之处。

列表

一种常用的列表类型是 tuple,它是不可变的。在 tuple 中载入一系列值之后,您不会更改它。Tuple 可以包含数字、字符串、变量,甚至其他 tuples。Tuples 从 0 开始建立索引,这很正常;您可以使用 -1 索引访问最后一个项目。您还可以对 tuple 运行一些函数(请参见清单 9)。

清单 9. Tuples

items = (1, mutt, 'Honda', (1,2,3))

print items[1] #prints Kafka

print items[-1] #prints (1,2,3)

items2 = items[0:2] #items2 now contains (1, 'Kafka') thanks to slice operation

'Honda' in items #returns TRUE

len(items) #returns 4

items.index('Kafka') #returns 1, because second item matches this index location

列表与 tuple 类似,只不过它们是可变的。创建列表之后,您可以添加、删除和更新列表中的值。列表使用方括号,而不是圆括号(()),如清单 10 所示。

清单 10. 列表

groceries = ['ham','spam','eggs']

len(groceries) #returns 3

print groceries[1] #prints spam

for x in groceries:

print x.upper() #prints HAM SPAM EGGS

groceries[2] = 'bacon'

groceries #list is now ['ham','spam','bacon']

groceries.append('eggs')

groceries #list is now ['ham', 'spam', 'bacon', 'eggs']

groceries.sort()

groceries #list is now ['bacon', 'eggs', 'ham', 'spam']

字典类似于关联数组或散列;它使用键值对来存储和限制信息。但它不使用方括号和圆括号,而是使用尖括号。与列表类似,字典是可变的,这意味着您可以添加、删除和更新其中的值(请参见清单 11)。

清单 11. 字典

colorvalues = {'red' : 1, 'blue' : 2, 'green' : 3, 'yellow' : 4, 'orange' : 5}

colorvalues #prints {'blue': 2, 'orange': 5, 'green': 3, 'yellow': 4, 'red': 1}

colorvalues['blue'] #prints 2

colorvalues.keys() #retrieves all keys as a list:

#['blue', 'orange', 'green', 'yellow', 'red']

colorvalues.pop('blue') #prints 2 and removes the blue key/value pair

colorvalues #after pop, we have:

#{'orange': 5, 'green': 3, 'yellow': 4, 'red': 1}

在 Python 中创建一个简单的脚本

现在,您已经对 Python 有了一定的了解。接下来,我们将创建一个简单的 Python 脚本。该脚本将读取位于您的服务器 /tmp 目录下的 PHP 会话文件的数量,并在日志文件中写入摘要报告。在该脚本中,您将学习如何导入特定函数的模块,如何使用文件,以及如何写入日志文件。您还将设置一系列变量来跟踪所收集的信息。

清单 12 展示了整个脚本。打开一个编辑器,并将代码粘贴到其中,然后在系统中将该文件保存为 tmp.py。然后,对该文件运行 chmod + x,使它成为可执行文件(假定您使用 UNIX? 系统)。

清单 12. tmp.py

#!/usr/bin/python

import os

from time import strftime

stamp = strftime("%Y-%m-%d %H:%M:%S")

logfile = '/path/to/your/logfile.log'

path = '/path/to/tmp/directory/'

files = os.listdir(path)

bytes = 0

numfiles = 0

for f in files:

if f.startswith('sess_'):

info = os.stat(path + f)

numfiles += 1

bytes += info[6]

if numfiles > 1:

title = 'files'

else:

title = 'file'

string = stamp + " -- " + str(numfiles) + " session "

+ title +", " + str(bytes) + " bytes "

file = open(logfile,"a")

file.writelines(string)

file.close()

在第一行中,您可以看到一个 hash-bang 行:它用于标识 Python 解释器的位置。在我的系统中,它位于 /usr/bin/python。请根据系统需求调整这一行。

接下来的两行用于导入特定的模块,这些模块将帮助您执行作业。考虑到脚本需要处理文件夹和文件,因此您需要导入 os 模块,因为其中包含各种函数和方法,可帮助您列出文件、读取文件和操作文件夹。您还需要写入一个日志文件,因此可以为条目添加一个时间戳 — 这就需要使用时间函数。您不需要所有时间函数,只需要导入 strftime函数即可。

在接下来的六行中,您设置了一些变量。第一个变量是 stamp,其中包含一个日期字符串。然后,您使用 strftime 函数创建了一个特定格式的时间戳 — 在本例中,时间戳的格式为 2010-01-03 12:43:03。

接下来,创建一个 logfile 变量,并在文件中添加一个实际存储日志文件消息的路径(该文件不需要实际存在)。为简单起见,我在 /logs 文件夹中放置了一个日志文件,但您也可以将它放置在别处。同样,path 变量包含到 /tmp 目录的路径。您可以使用任何路径,只要使用斜杠作为结束即可 (/)。

接下来的三个变量也非常简单:files 列表包含指定路径中的所有文件和文件夹,另外还包含 bytes 和 numfiles 两个变量。这两个变量都设置为 0;脚本会在处理文件时递增这些值。

完成所有这些定义之后,接下来就是脚本的核心了:一个简单的 for 循环,用于处理文件列表中的各文件。每次运行循环时,脚本都会计算文件名;如果它以 sess_ 开头,则脚本会对该文件运行 os.stat(),提取文件数据(比如创建时间、修改时间和字节大小),递增 numfiles 计数器并将该文件的字节大小累计到总数中。

当循环完成运行后,脚本会检查 numfiles 变量中的值是否大于 1。如果大于 1,则会将一个新的 title 变量设置为 files;否则,title 将被设置为单数形式的 file。

脚本的最后部分也非常简单:您创建了一个 string 变量,并在该变量中添加了一行以时间戳开始的数据,并且其后还包含 numfiles(已转换为字符串)和字节(也已转换为字符串)。请注意继续字符();该字符可允许代码运行到下一行。它是一个提高可读性的小技巧。

然后,您使用 open() 函数以附加模式打开日志文件(毕竟始终需要在该文件中添加内容),writelines() 函数会将字符串添加到日志文件中,而 close() 函数用于关闭该文件。

现在,您已经创建了一个简单的 Python 脚本。该脚本可用于完成许多任务,举例来说,您可以设置一个 cron作业来每小时运行一次这个脚本,以帮助您跟踪 24 小时内所使用的 PHP 会话的数量。您还可以使用 jQuery 或其他一些 JavaScript 框架通过 Ajax 连接这个脚本,用于为您提供日志文件提要(如果采用这种方式,则需要使用 print命令来返回数据)。

消息中间件Kafka - PHP操作使用Kafka

cd librdkafka/

./configure make make install

安装成功界面 没有报错就是安装成功

关于php操作kafka的介绍到此就结束了,不知道本篇文章是否对您有帮助呢?如果你还想了解更多此类信息,记得收藏关注本站,我们会不定期更新哦。

查看更多关于php操作kafka php操作数据库实验心得的详细内容...

声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://www.haodehen.cn/did225963
更新时间:2023-05-11   阅读:41次

上一篇: php魔术方法的好处 php魔术方法的好处是什么

下一篇:php数组映射 php 数组

相关资讯

最新资料更新

  • 1.php数据分数排序 php实现积分排行榜
  • 2.php的if语句 php的if语句运用
  • 3.php实例上传txt代码的简单介绍
  • 4.php链接数据库创建表格 php连接数据库的方法
  • 5.php如何制作游戏 php游戏源码
  • 6.php变下载文件 php 下载文件
  • 7.jq读取php变量 php读取html内容
  • 8.php毫秒间隔 php时间距离现在
  • 9.phpwsdl调用 php调用php文件
  • 10.phpping测速 测试php性能工具
  • 11.php客户信息管理 php用户管理
  • 12.php比较运算符价格 php中用于比较字符串的函数
  • 13.php环境配置工具 phpstorm2021配置php环境
  • 14.bashphp的简单介绍
  • 15.php根据城市定位 php获取位置信息
  • 16.nginx隐藏.php nginx隐藏ip
  • 17.php防止ajax接口 php防止接口多次请求
  • 18.安卓phpapp 安卓php服务器
  • 19.php解析img PHP解析器
  • 20.php相除保留到分 php除法保留小数

CopyRight:2016-2025好得很程序员自学网 备案ICP:湘ICP备09009000号-16 http://www.haodehen.cn
本站资讯不构成任何建议,仅限于个人分享,参考须谨慎!
本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。

网站内容来源于网络分享,如有侵权发邮箱到:kenbest@126.com,收到邮件我们会即时下线处理。
网站框架支持:HDHCMS   51LA统计 百度统计
Copyright © 2018-2025 「好得很程序员自学网」
[ SiteMap ]