好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

java自己手动控制kafka的offset操作

之前使用kafka的KafkaStream,让每个消费者和对应的patition建立对应的流来读取kafka上面的数据,如果comsumer得到数据,那么kafka就会自动去维护该comsumer的offset,例如在获取到kafka的消息后正准备入库(未入库),但是消费者挂了,那么如果让kafka自动去维护offset,它就会认为这条数据已经被消费了,那么会造成数据丢失。

但是kafka可以让你自己去手动提交,如果在上面的场景中,那么需要我们手动commit,如果comsumer挂了 那么程序就不会执行commit这样的话 其他同group的消费者又可以消费这条数据,保证数据不丢,先要做如下设置:

?

1

2

//设置不自动提交,自己手动更新offset

properties.put( "enable.auto.commit" , "false" );

使用如下api提交:

?

1

consumer.commitSync();

注意:

刚做了个测试,如果我从kafka中取出5条数据,分别为1,2,3,4,5,如果消费者在执行一些逻辑在执行1,2,3,4的时候都失败了未提交commit,然后消费5做逻辑成功了提交了commit,那么offset也会被移动到5那一条数据那里,1,2,3,4 相当于也会丢失

如果是做消费者取出数据执行一些操作,全部都失败的话,然后重启消费者,这些数据会从失败的时候重新开始读取

所以消费者还是应该自己做容错机制

测试项目结构如下:

其中ConsumerThreadNew类:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

package com.lijie.kafka;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.clients.consumer.ConsumerRecords;

import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

/**

  *

  *           

  * @Filename ConsumerThreadNew.java

  *

  * @Description

  *

  * @Version 1.0

  *

  * @Author Lijie

  *

  * @Email lijiewj39069@touna.cn

  *   

  * @History

  *<li>Author: Lijie</li>

  *<li>Date: 2017年3月21日</li>

  *<li>Version: 1.0</li>

  *<li>Content: create</li>

  *

  */

public class ConsumerThreadNew implements Runnable {

   private static Logger          LOG = LoggerFactory.getLogger(ConsumerThreadNew. class );

   //KafkaConsumer kafka生产者

   private KafkaConsumer<String, String>  consumer;

   //消费者名字

   private String             name;

   //消费的topic组

   private List<String>          topics;

   //构造函数

   public ConsumerThreadNew(KafkaConsumer<String, String> consumer, String topic, String name) {

     super ();

     this .consumer = consumer;

     this .name = name;

     this .topics = Arrays.asList(topic);

   }

   @Override

   public void run() {

     consumer.subscribe(topics);

     List<ConsumerRecord<String, String>> buffer = new ArrayList<>();

     // 批量提交数量

     final int minBatchSize = 1 ;

     while ( true ) {

       ConsumerRecords<String, String> records = consumer.poll( 100 );

       for (ConsumerRecord<String, String> record : records) {

         LOG.info( "消费者的名字为:" + name + ",消费的消息为:" + record.value());

         buffer.add(record);

       }

       if (buffer.size() >= minBatchSize) {

         //这里就是处理成功了然后自己手动提交

         consumer.commitSync();

         LOG.info( "提交完毕" );

         buffer.clear();

       }

     }

   }

}

MyConsume类如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

package com.lijie.kafka;

import java.util.Properties;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

/**

  *

  *           

  * @Filename MyConsume.java

  *

  * @Description

  *

  * @Version 1.0

  *

  * @Author Lijie

  *

  * @Email lijiewj39069@touna.cn

  *   

  * @History

  *<li>Author: Lijie</li>

  *<li>Date: 2017年3月21日</li>

  *<li>Version: 1.0</li>

  *<li>Content: create</li>

  *

  */

public class MyConsume {

   private static Logger  LOG = LoggerFactory.getLogger(MyConsume. class );

   public MyConsume() {

     // TODO Auto-generated constructor stub

   }

   public static void main(String[] args) {

     Properties properties = new Properties();

     properties.put( "bootstrap.servers" , "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093" );

     //设置不自动提交,自己手动更新offset

     properties.put( "enable.auto.commit" , "false" );

     properties.put( "auto.offset.reset" , "latest" );

     properties.put( "zookeeper.connect" , "10.0.4.141:2181,10.0.4.142:2181,10.0.4.143:2181" );

     properties.put( "session.timeout.ms" , "30000" );

     properties.put( "key.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" );

     properties.put( "value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" );

     properties.put( "group.id" , "lijieGroup" );

     properties.put( "zookeeper.connect" , "192.168.80.123:2181" );

     properties.put( "auto.commit.interval.ms" , "1000" );

     ExecutorService executor = Executors.newFixedThreadPool( 5 );

     //执行消费

     for ( int i = 0 ; i < 7 ; i++) {

       executor.execute( new ConsumerThreadNew( new KafkaConsumer<String, String>(properties),

         "lijietest" , "消费者" + (i + 1 )));

     }

   }

}

MyProducer类如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

package com.lijie.kafka;

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.ProducerRecord;

/**

  *

  *           

  * @Filename MyProducer.java

  *

  * @Description

  *

  * @Version 1.0

  *

  * @Author Lijie

  *

  * @Email lijiewj39069@touna.cn

  *   

  * @History

  *<li>Author: Lijie</li>

  *<li>Date: 2017年3月21日</li>

  *<li>Version: 1.0</li>

  *<li>Content: create</li>

  *

  */

public class MyProducer {

   private static Properties            properties;

   private static KafkaProducer<String, String>  pro;

   static {

     //配置

     properties = new Properties();

     properties.put( "bootstrap.servers" , "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093" );

     //序列化类型

     properties

       .put( "value.serializer" , "org.apache.kafka.common.serialization.StringSerializer" );

     properties.put( "key.serializer" , "org.apache.kafka.common.serialization.StringSerializer" );

     //创建生产者

     pro = new KafkaProducer<>(properties);

   }

   public static void main(String[] args) throws Exception {

     produce( "lijietest" );

   }

   public static void produce(String topic) throws Exception {

     //模拟message

     //     String value = UUID.randomUUID().toString();

     for ( int i = 0 ; i < 10000 ; i++) {

       //封装message

       ProducerRecord<String, String> pr = new ProducerRecord<String, String>(topic, i + "" );

       //发送消息

       pro.send(pr);

       Thread.sleep( 1000 );

     }

   }

}

pom文件如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

< project xmlns = "http://maven.apache.org/POM/4.0.0" xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

   xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd" >

   < modelVersion >4.0.0</ modelVersion >

   < groupId >lijie-kafka-offset</ groupId >

   < artifactId >lijie-kafka-offset</ artifactId >

   < version >0.0.1-SNAPSHOT</ version >

   < dependencies >

     < dependency >

       < groupId >org.apache.kafka</ groupId >

       < artifactId >kafka_2.11</ artifactId >

       < version >0.10.1.1</ version >

     </ dependency >

     < dependency >

       < groupId >org.apache.hadoop</ groupId >

       < artifactId >hadoop-common</ artifactId >

       < version >2.2.0</ version >

     </ dependency >

     < dependency >

       < groupId >org.apache.hadoop</ groupId >

       < artifactId >hadoop-hdfs</ artifactId >

       < version >2.2.0</ version >

     </ dependency >

     < dependency >

       < groupId >org.apache.hadoop</ groupId >

       < artifactId >hadoop-client</ artifactId >

       < version >2.2.0</ version >

     </ dependency >

     < dependency >

       < groupId >org.apache.hbase</ groupId >

       < artifactId >hbase-client</ artifactId >

       < version >1.0.3</ version >

     </ dependency >

     < dependency >

       < groupId >org.apache.hbase</ groupId >

       < artifactId >hbase-server</ artifactId >

       < version >1.0.3</ version >

     </ dependency >

     < dependency >

       < groupId >org.apache.hadoop</ groupId >

       < artifactId >hadoop-hdfs</ artifactId >

       < version >2.2.0</ version >

     </ dependency >

     < dependency >

       < groupId >jdk.tools</ groupId >

       < artifactId >jdk.tools</ artifactId >

       < version >1.7</ version >

       < scope >system</ scope >

       < systemPath >${JAVA_HOME}/lib/tools.jar</ systemPath >

     </ dependency >

     < dependency >

       < groupId >org.apache.httpcomponents</ groupId >

       < artifactId >httpclient</ artifactId >

       < version >4.3.6</ version >

     </ dependency >

   </ dependencies >

   < build >

     < plugins >

       < plugin >

         < groupId >org.apache.maven.plugins</ groupId >

         < artifactId >maven-compiler-plugin</ artifactId >

         < configuration >

           < source >1.7</ source >

           < target >1.7</ target >

         </ configuration >

       </ plugin >

     </ plugins >

   </ build >

</ project >

补充:kafka javaAPI 手动维护偏移量

我就废话不多说了,大家还是直接看代码吧~

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

package com.kafka;

import kafka.javaapi.PartitionMetadata;

import kafka.javaapi.consumer.SimpleConsumer;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.clients.consumer.ConsumerRecords;

import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.apache.kafka.clients.consumer.OffsetAndMetadata;

import org.apache.kafka.common.TopicPartition;

import org.junit.Test;

import java.util.*;

public class ConsumerManageOffet {

//broker的地址,

//与老版的kafka的区别是,新版本的kafka把偏移量保存到了broker,而老版本的是把偏移量保存到了zookeeper中

//所以在读取数据时,应当设置broker的地址

   private static String ips = "192.168.136.150:9092,192.168.136.151:9092,192.168.136.152:9092" ;

   public static void main(String[] args) {

     Properties props = new Properties();

     props.put( "bootstrap.servers" ,ips);

     props.put( "group.id" , "test02" );

     props.put( "auto.offset.reset" , "earliest" );

     props.put( "max.poll.records" , "10" );

     props.put( "key.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" );

     props.put( "value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" );

     KafkaConsumer<String,String> consumer = new KafkaConsumer<>(props);

     consumer.subscribe(Arrays.asList( "my-topic" ));

     System.out.println( "---------------------" );

     while ( true ){

       ConsumerRecords<String,String> records = consumer.poll( 10 );

       System.out.println( "+++++++++++++++++++++++" );

       for (ConsumerRecord<String,String> record: records){

         System.out.println( "---" );

         System.out.printf( "offset=%d,key=%s,value=%s%n" ,record.offset(),

             record.key(),record.value());

       }

     }

   }

   //手动维护偏移量

   @Test

   public void autoManageOffset2(){

     Properties props = new Properties();

     //broker的地址

     props.put( "bootstrap.servers" ,ips);

     //这是消费者组

     props.put( "group.id" , "groupPP" );

     //设置消费的偏移量,如果以前消费过则接着消费,如果没有就从头开始消费

     props.put( "auto.offset.reset" , "earliest" );

     //设置自动提交偏移量为false

     props.put( "enable.auto.commit" , "false" );

     //设置Key和value的序列化

     props.put( "key.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" );

     props.put( "value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" );

     //new一个消费者

     KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

     //指定消费的topic

     consumer.subscribe(Arrays.asList( "my-topic" ));

     while ( true ){

       ConsumerRecords<String, String> records = consumer.poll( 1000 );

       //通过records获取这个集合中的数据属于那几个partition

       Set<TopicPartition> partitions = records.partitions();

       for (TopicPartition tp : partitions){

         //通过具体的partition把该partition中的数据拿出来消费

         List<ConsumerRecord<String, String>> partitionRecords = records.records(tp);

         for (ConsumerRecord r : partitionRecords){

           System.out.println(r.offset()  + "   " +r.key()+ "   " +r.value());

         }

         //获取新这个partition中的最后一条记录的offset并加1 那么这个位置就是下一次要提交的offset

         long newOffset = partitionRecords.get(partitionRecords.size() - 1 ).offset() + 1 ;

         consumer.commitSync(Collections.singletonMap(tp, new OffsetAndMetadata(newOffset)));

       }

     }

   }

}

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://blog.csdn.net/qq_20641565/article/details/64440425

查看更多关于java自己手动控制kafka的offset操作的详细内容...

  阅读:16次