一、前言
知识补充:Arrays.copyOf函数:
1 2 3 4 5 6 |
public static int [] copyOf( int [] original, int newLength) { int [] copy = new int [newLength]; System.arraycopy(original, 0 , copy, 0 , Math.min(original.length, newLength)); return copy; } |
可见copyOf()在内部新建一个数组,调用arrayCopy()将original内容复制到copy中去,并且长度为newLength。返回copy;
继续看一下System.arraycopy函数:
1 2 3 |
public static native void arraycopy(Object src, int srcPos, Object dest, int destPos, int length); |
src - 源数组。
srcPos - 源数组中的起始位置。
dest - 目标数组。
destPos - 目标数据中的起始位置。
length - 要复制的数组元素的数量。
该方法是用了native关键字,调用的为C++编写的底层函数,可见其为JDK中的底层函数。
二、Vector简介
1 2 3 |
public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable |
Vector类实现了一个可增长的对象数组,内部是以动态数组的形式来存储数据的。 Vector具有数组所具有的特性、通过索引支持随机访问、所以通过随机访问Vector中的元素效率非常高、但是执行插入、删除时效率比较低下。 继承了AbstractList,此类提供 List 接口的骨干实现,以最大限度地减少实现]随机访问]数据存储(如数组)支持的该接口所需的工作.对于连续的访问数据(如链表),应优先使用 AbstractSequentialList,而不是此类. 实现了List接口,意味着Vector元素是有序的,可以重复的,可以有null元素的集合. 实现了RandomAccess接口标识着其支持随机快速访问,实际上,我们查看RandomAccess源码可以看到,其实里面什么都没有定义.因为ArrayList底层是数组,那么随机快速访问是理所当然的,访问速度O(1). 实现了Cloneable接口,标识着可以它可以被复制.注意,ArrayList里面的clone()复制其实是浅复制 实现了Serializable 标识着集合可被序列化。
三、Vector源码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { //保存Vector数据的数组 protected Object[] elementData;
//实际数据的数量 protected int elementCount;
//容量增长的系数 protected int capacityIncrement;
// Vector的序列版本号 private static final long serialVersionUID = -2767605614048989439L;
//指定Vector初始大小和增长系数的构造函数 public Vector( int initialCapacity, int capacityIncrement) { super (); if (initialCapacity < 0 ) throw new IllegalArgumentException( "Illegal Capacity: " + initialCapacity); this .elementData = new Object[initialCapacity]; this .capacityIncrement = capacityIncrement; }
//指定初始容量的构造函数 public Vector( int initialCapacity) { this (initialCapacity, 0 ); }
//Vector构造函数,默认容量为10 public Vector() { this ( 10 ); }
//初始化一个指定集合数据的构造函数 public Vector(Collection<? extends E> c) { elementData = c.toArray(); elementCount = elementData.length; // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[]. class ) elementData = Arrays.copyOf(elementData, elementCount, Object[]. class ); }
//将Vector全部元素拷贝到anArray数组中 public synchronized void copyInto(Object[] anArray) { System.arraycopy(elementData, 0 , anArray, 0 , elementCount); }
//当前的数组中元素个数大于记录的元素个数时,重新赋值给当前数组所记录的元素 public synchronized void trimToSize() { modCount++; int oldCapacity = elementData.length; if (elementCount < oldCapacity) { elementData = Arrays.copyOf(elementData, elementCount); } }
//确定Vector的容量 public synchronized void ensureCapacity( int minCapacity) { if (minCapacity > 0 ) { // 将Vector的改变统计数+1 modCount++; ensureCapacityHelper(minCapacity); } }
//确定容量的帮助函数,如果所需容量大于当前的容量时则执行扩容 private void ensureCapacityHelper( int minCapacity) { // overflow-conscious code if (minCapacity - elementData.length > 0 ) grow(minCapacity); }
//数组所允许的最大容量 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8 ;
//执行扩容函数 private void grow( int minCapacity) { // overflow-conscious code //记录当前容量 int oldCapacity = elementData.length; //如果扩容系数大于0则新容量等于当前容量+扩容系数,如果扩容系数小于等于0则新容量等于当前容量的2倍 int newCapacity = oldCapacity + ((capacityIncrement > 0 ) ? capacityIncrement : oldCapacity); //如果新容量小于当前需要的容量,则把需要的容量赋值给需要扩容的新容量 if (newCapacity - minCapacity < 0 ) newCapacity = minCapacity; //如果新扩容容量大于最大数组容量,则执行巨大扩容 if (newCapacity - MAX_ARRAY_SIZE > 0 ) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); }
//巨大扩容函数,如果所需容量大于最大数组容量,则返回int形最大值(2^31 -1),否则返回最大数组容量 private static int hugeCapacity( int minCapacity) { if (minCapacity < 0 ) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; }
//设置容量值为newSize,如果newSize大于当前容量,则扩容,否则newSize以后的所有元素置null public synchronized void setSize( int newSize) { modCount++; if (newSize > elementCount) { ensureCapacityHelper(newSize); } else { for ( int i = newSize ; i < elementCount ; i++) { elementData[i] = null ; } } elementCount = newSize; }
//返回当前Vector的容量 public synchronized int capacity() { return elementData.length; }
//返回Vector元素的个数 public synchronized int size() { return elementCount; }
//Vector元素个数是否为0 public synchronized boolean isEmpty() { return elementCount == 0 ; }
//返回Vector元素的Enumeration,Enumeration 接口是Iterator迭代器的[古老版本] //Enumeration接口中的方法名称难以记忆,而且没有Iterator的remove()方法。如果现在编写Java程序,应该尽量采用 //Iterator迭代器,而不是用Enumeration迭代器。 //之所以保留Enumeration接口的原因,主要为了照顾以前那些[古老]的程序,那些程序里大量使用Enumeration接口,如果新版 //本的Java里直接删除Enumeration接口,将会导致那些程序全部出错。 public Enumeration<E> elements() { return new Enumeration<E>() { int count = 0 ;
public boolean hasMoreElements() { return count < elementCount; }
public E nextElement() { synchronized (Vector. this ) { if (count < elementCount) { return elementData(count++); } } throw new NoSuchElementException( "Vector Enumeration" ); } }; }
//返回Vector中是否包含对象o public boolean contains(Object o) { return indexOf(o, 0 ) >= 0 ; }
// 查找并返回元素(o)在Vector中的索引值 public int indexOf(Object o) { return indexOf(o, 0 ); }
// 从index位置开始向后查找元素(o)。 // 若找到,则返回元素的索引值;否则,返回-1 public synchronized int indexOf(Object o, int index) { if (o == null ) { for ( int i = index ; i < elementCount ; i++) if (elementData[i]== null ) return i; } else { for ( int i = index ; i < elementCount ; i++) if (o.equals(elementData[i])) return i; } return - 1 ; }
// 从后向前查找元素(o)。并返回元素的索引 public synchronized int lastIndexOf(Object o) { return lastIndexOf(o, elementCount- 1 ); }
// 从index位置开始向前查找元素(o)。 // 若找到,则返回元素的索引值;否则,返回-1 public synchronized int lastIndexOf(Object o, int index) { if (index >= elementCount) throw new IndexOutOfBoundsException(index + " >= " + elementCount);
if (o == null ) { for ( int i = index; i >= 0 ; i--) if (elementData[i]== null ) return i; } else { for ( int i = index; i >= 0 ; i--) if (o.equals(elementData[i])) return i; } return - 1 ; }
// 返回Vector中index位置的元素。 // 若index越界,则抛出异常 public synchronized E elementAt( int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); }
return elementData(index); }
// 返回Vector中第0位置的元素。 public synchronized E firstElement() { if (elementCount == 0 ) { throw new NoSuchElementException(); } return elementData( 0 ); }
// 返回Vector中最后一个元素。 public synchronized E lastElement() { if (elementCount == 0 ) { throw new NoSuchElementException(); } return elementData(elementCount - 1 ); }
// 设置index位置的元素值为obj public synchronized void setElementAt(E obj, int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } elementData[index] = obj; }
//删除index位置处的元素 public synchronized void removeElementAt( int index) { modCount++; if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } else if (index < 0 ) { throw new ArrayIndexOutOfBoundsException(index); } int j = elementCount - index - 1 ; if (j > 0 ) { System.arraycopy(elementData, index + 1 , elementData, index, j); } elementCount--; elementData[elementCount] = null ; /* to let gc do its work */ }
//在index位置插入元素obj public synchronized void insertElementAt(E obj, int index) { modCount++; if (index > elementCount) { throw new ArrayIndexOutOfBoundsException(index + " > " + elementCount); } ensureCapacityHelper(elementCount + 1); System.arraycopy(elementData, index, elementData, index + 1, elementCount - index); elementData[index] = obj; elementCount++; }
//在vector后面添加对象obj public synchronized void addElement(E obj) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = obj; }
// 在Vector中查找并删除元素obj。 // 成功的话,返回true;否则,返回false。 public synchronized boolean removeElement(Object obj) { modCount++; int i = indexOf(obj); if (i >= 0) { removeElementAt(i); return true; } return false; }
//删除Vector中所有元素 public synchronized void removeAllElements() { modCount++; // Let gc do its work for (int i = 0; i < elementCount; i++) elementData[i] = null;
elementCount = 0; }
//返回Vector的克隆。 该副本将包含对内部数据数组的克隆的引用,而不是对此对象的原始内部数据数组的引用。 public synchronized Object clone() { try { @SuppressWarnings("unchecked") Vector<E> v = (Vector<E>) super.clone(); v.elementData = Arrays.copyOf(elementData, elementCount); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } }
//返回包含Vector所有元素的数组 public synchronized Object[] toArray() { return Arrays.copyOf(elementData, elementCount); }
// 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型 @SuppressWarnings("unchecked") public synchronized <T> T[] toArray(T[] a) { // 若数组a的大小 < Vector的元素个数; // 则新建一个T[]数组,数组大小是[Vector的元素个数],并将[Vector]全部拷贝到新数组中 if (a.length < elementCount) return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass()); // 若数组a的大小 >= Vector的元素个数; // 则将Vector的全部元素都拷贝到数组a中。 System.arraycopy(elementData, 0, a, 0, elementCount);
if (a.length > elementCount) a[elementCount] = null;
return a; }
// Positional Access Operations
@SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; }
//获取index处的元素 public synchronized E get(int index) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index);
return elementData(index); }
//设置index处的元素为element,并返回被替换掉的元素 public synchronized E set(int index, E element) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index); elementData[index] = element; return oldValue; }
//Vector末尾添加元素 public synchronized boolean add(E e) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = e; return true; }
//移除Vector中第一个出现对象o的元素 public boolean remove(Object o) { return removeElement(o); }
//在index位置添加对象element public void add(int index, E element) { insertElementAt(element, index); }
//移除index位置的元素 public synchronized E remove(int index) { modCount++; if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index);
int numMoved = elementCount - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--elementCount] = null; // Let gc do its work
return oldValue; }
// 清空Vector public void clear() { removeAllElements(); }
// Bulk Operations
// 返回Vector是否包含集合c public synchronized boolean containsAll(Collection<?> c) { return super.containsAll(c); }
//在Vector末尾添加集合c public synchronized boolean addAll(Collection<? extends E> c) { modCount++; Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); System.arraycopy(a, 0, elementData, elementCount, numNew); elementCount += numNew; return numNew != 0; }
// 删除集合c的全部元素 public synchronized boolean removeAll(Collection<?> c) { return super.removeAll(c); }
// 删除[非集合c中的元素] public synchronized boolean retainAll(Collection<?> c) { return super.retainAll(c); }
//在index位置添加集合c中的元素 public synchronized boolean addAll(int index, Collection<? extends E> c) { modCount++; if (index < 0 || index > elementCount) throw new ArrayIndexOutOfBoundsException(index);
Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew);
int numMoved = elementCount - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved);
System.arraycopy(a, 0, elementData, index, numNew); elementCount += numNew; return numNew != 0; }
// 返回两个对象是否相等 public synchronized boolean equals(Object o) { return super.equals(o); }
// 计算哈希值 public synchronized int hashCode() { return super.hashCode(); }
// 调用父类的toString() public synchronized String toString() { return super.toString(); }
// 获取Vector中fromIndex(包括)到toIndex(不包括)的子集 public synchronized List<E> subList(int fromIndex, int toIndex) { return Collections.synchronizedList(super.subList(fromIndex, toIndex), this); }
// 删除Vector中fromIndex到toIndex的元素 protected synchronized void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = elementCount - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved);
// Let gc do its work int newElementCount = elementCount - (toIndex-fromIndex); while (elementCount != newElementCount) elementData[--elementCount] = null; }
// java.io.Serializable的写入函数 private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final java.io.ObjectOutputStream.PutField fields = s.putFields(); final Object[] data; synchronized (this) { fields.put("capacityIncrement", capacityIncrement); fields.put("elementCount", elementCount); data = elementData.clone(); } fields.put("elementData", data); s.writeFields(); }
public synchronized ListIterator<E> listIterator(int index) { if (index < 0 || index > elementCount) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); }
public synchronized ListIterator<E> listIterator() { return new ListItr(0); } public synchronized Iterator<E> iterator() { return new Itr(); }
private class Itr implements Iterator<E> { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount;
public boolean hasNext() { // Racy but within spec, since modifications are checked // within or after synchronization in next/previous return cursor != elementCount; }
public E next() { synchronized (Vector.this) { checkForComodification(); int i = cursor; if (i >= elementCount) throw new NoSuchElementException(); cursor = i + 1; return elementData(lastRet = i); } }
public void remove() { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.remove(lastRet); expectedModCount = modCount; } cursor = lastRet; lastRet = -1; }
@Override public void forEachRemaining(Consumer<? super E> action) { Objects.requireNonNull(action); synchronized (Vector.this) { final int size = elementCount; int i = cursor; if (i >= size) { return; } @SuppressWarnings("unchecked") final E[] elementData = (E[]) Vector.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { action.accept(elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } }
final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } }
final class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { super(); cursor = index; }
public boolean hasPrevious() { return cursor != 0; }
public int nextIndex() { return cursor; }
public int previousIndex() { return cursor - 1; }
public E previous() { synchronized (Vector.this) { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); cursor = i; return elementData(lastRet = i); } }
public void set(E e) { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.set(lastRet, e); } }
public void add(E e) { int i = cursor; synchronized (Vector.this) { checkForComodification(); Vector.this.add(i, e); expectedModCount = modCount; } cursor = i + 1; lastRet = -1; } }
@Override public synchronized void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int elementCount = this.elementCount; for (int i=0; modCount == expectedModCount && i < elementCount; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } }
@Override @SuppressWarnings("unchecked") public synchronized boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final int size = elementCount; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); }
// shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } elementCount = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; }
return anyToRemove; }
@Override @SuppressWarnings("unchecked") public synchronized void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = elementCount; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; }
@SuppressWarnings("unchecked") @Override public synchronized void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, elementCount, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; }
@Override public Spliterator<E> spliterator() { return new VectorSpliterator<>(this, null, 0, -1, 0); }
/** Similar to ArrayList Spliterator */ static final class VectorSpliterator<E> implements Spliterator<E> { private final Vector<E> list; private Object[] array; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set
/** Create new spliterator covering the given range */ VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence, int expectedModCount) { this .list = list; this .array = array; this .index = origin; this .fence = fence; this .expectedModCount = expectedModCount; }
private int getFence() { // initialize on first use int hi; if ((hi = fence) < 0 ) { synchronized (list) { array = list.elementData; expectedModCount = list.modCount; hi = fence = list.elementCount; } } return hi; }
public Spliterator<E> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1 ; return (lo >= mid) ? null : new VectorSpliterator<E>(list, array, lo, index = mid, expectedModCount); }
@SuppressWarnings ( "unchecked" ) public boolean tryAdvance(Consumer<? super E> action) { int i; if (action == null ) throw new NullPointerException(); if (getFence() > (i = index)) { index = i + 1 ; action.accept((E)array[i]); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true ; } return false ; }
@SuppressWarnings ( "unchecked" ) public void forEachRemaining(Consumer<? super E> action) { int i, hi; // hoist accesses and checks from loop Vector<E> lst; Object[] a; if (action == null ) throw new NullPointerException(); if ((lst = list) != null ) { if ((hi = fence) < 0 ) { synchronized (lst) { expectedModCount = lst.modCount; a = array = lst.elementData; hi = fence = lst.elementCount; } } else a = array; if (a != null && (i = index) >= 0 && (index = hi) <= a.length) { while (i < hi) action.accept((E) a[i++]); if (lst.modCount == expectedModCount) return ; } } throw new ConcurrentModificationException(); }
public long estimateSize() { return ( long ) (getFence() - index); }
public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } } |
四、总结
Vector实际上是通过一个数组去保存数据的。当我们构造Vecotr时;若使用默认构造函数,则Vector的默认容量大小是10。 当Vector容量不足以容纳全部元素时,Vector的容量会增加。若容量增加系数 >0,则将容量的值增加[容量增加系数];否则,将容量大小增加一倍。 Vector的克隆函数,即是将全部元素克隆到一个数组中。
五、Vector遍历方式
1. 随机访问遍历,通过索引值去遍历
由于Vector实现了RandomAccess接口,它支持通过索引值去随机访问元素。
1 2 3 4 5 |
Integer value = null ; int size = vec.size(); for ( int i= 0 ; i<size; i++) { value = (Integer)vec.get(i); } |
2. 通过迭代器遍历。即通过Iterator去遍历
1 2 3 4 5 |
Integer value = null ; Iterator<Integer> iterator = vec.iterator(); while (iterator.hasNext()) { value = iterator.next(); } |
3. 通过增强for循环去遍历
1 2 3 4 |
Integer value = null ; for (Integer integ:vec) { value = integ; } |
4. 通过Enumeration遍历
1 2 3 4 5 |
Integer value = null ; Enumeration enu = vec.elements(); while (enu.hasMoreElements()) { value = (Integer)enu.nextElement(); } |
测试这些遍历方式效率的代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
public class Test {
public static void main(String[] args) { Vector<Integer> vector = new Vector<>(); for ( int i = 0 ; i < 100000 ; i++) vector.add(i);
iteratorThroughRandomAccess(vector); iteratorThroughIterator(vector); iteratorThroughFor2(vector); iteratorThroughEnumeration(vector); }
public static void iteratorThroughRandomAccess(List list) { long startTime, endTime; startTime = System.currentTimeMillis(); for ( int i = 0 ; i < list.size(); i++) {
} endTime = System.currentTimeMillis(); long time = endTime - startTime; System.out.println( "iteratorThroughRandomAccess:" + time + " ms" ); }
public static void iteratorThroughIterator(List list) { long startTime, endTime; startTime = System.currentTimeMillis(); Iterator<Integer> iterator = list.iterator(); while (iterator.hasNext()) { iterator.next(); } endTime = System.currentTimeMillis(); long time = endTime - startTime; System.out.println( "iteratorThroughIterator:" + time + " ms" ); }
public static void iteratorThroughFor2(List list) { long startTime, endTime; startTime = System.currentTimeMillis(); for (Object o : list) {
} endTime = System.currentTimeMillis(); long time = endTime - startTime; System.out.println( "iteratorThroughFor2:" + time + " ms" ); }
public static void iteratorThroughEnumeration(Vector vec) { long startTime, endTime; startTime = System.currentTimeMillis(); for (Enumeration enu = vec.elements(); enu.hasMoreElements(); ) { enu.nextElement(); } endTime = System.currentTimeMillis(); long time = endTime - startTime; System.out.println( "iteratorThroughEnumeration:" + time + " ms" ); }
} |
输出如下:
iteratorThroughRandomAccess:3 ms
iteratorThroughIterator:6 ms
iteratorThroughFor2:5 ms
iteratorThroughEnumeration:5 ms
所以:遍历Vector,使用索引的随机访问方式最快,使用迭代器最慢。
到此这篇关于Java基础之容器Vector详解的文章就介绍到这了,更多相关java容器Vector内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
原文链接:https://blog.csdn.net/u013277209/article/details/80376209
查看更多关于Java基础之容器Vector详解的详细内容...