好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

Java防止频繁请求、重复提交的操作代码(后端防抖操作)

在客户端网络慢或者服务器响应慢时,用户有时是会频繁刷新页面或重复提交表单的,这样是会给服务器造成不小的负担的,同时在添加数据时有可能造成不必要的麻烦。所以我们在后端也有必要进行防抖操作。

1.自定义注解

/**
* @author Tzeao
*/
@Target(ElementType.METHOD) // 作用到方法上
@Retention(RetentionPolicy.RUNTIME) // 运行时有效
public @interface NoRepeatSubmit {

  //名称,如果不给就是要默认的
  String name() default "name";
}

2.使用AOP实现该注解

/**
* @author Tzeao
*/
@Aspect
@Component
@Slf4j
public class NoRepeatSubmitAop {

  @Autowired
  private RedisService redisService;

  /**
   * 切入点
   */
  @Pointcut("@annotation(com.qwt.part_time_admin_api.common.validation.NoRepeatSubmit)")
  public void pt() {
  }

  @Around("pt()")
  public Object arround(ProceedingJoinPoint joinPoint) throws Throwable {

      ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
      assert attributes != null;
      HttpServletRequest request = attributes.getRequest();
      //这里是唯一标识 根据情况而定
      String key = "1" + "-" + request.getServletPath();
      // 如果缓存中有这个url视为重复提交
      if (!redisService.haskey(key)) {
          //通过,执行下一步
          Object o = joinPoint.proceed();
          //然后存入redis 并且设置15s倒计时
          redisService.setCacheObject(key, 0, 15, TimeUnit.SECONDS);
          //返回结果
          return o;
      } else {
          return Result.fail(400, "请勿重复提交或者操作过于频繁!");
      }

  }
}

3.serice,也可以放在工具包里面,这里我们使用到了Redis来对key和标识码进行存储和倒计时,所以在使用时还需要连接一下Redis

package com.qwt.part_time_admin_api.service;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.*;
import org.springframework.stereotype.Component;

import java.util.*;
import java.util.concurrent.TimeUnit;


/**
* @author Tzeao
*/
@Component
public class RedisService {

@Autowired
public RedisTemplate redisTemplate;

/**
* 缓存基本的对象,Integer、String、实体类等
*
* @param key   缓存的键值
* @param value 缓存的值
* @return 缓存的对象
*/
public <T> ValueOperations<String, T> setCacheObject(String key, T value) {
  ValueOperations<String, T> operation = redisTemplate.opsForValue();
  operation.set(key, value);
  return operation;
}

/**
* 缓存基本的对象,Integer、String、实体类等
*
* @param key      缓存的键值
* @param value    缓存的值
* @param timeout  时间
* @param timeUnit 时间颗粒度
* @return 缓存的对象
*/
public <T> ValueOperations<String, T> setCacheObject(String key, T value, Integer timeout, TimeUnit timeUnit) {
  ValueOperations<String, T> operation = redisTemplate.opsForValue();
  operation.set(key, value, timeout, timeUnit);
  return operation;
}

/**
* 获得缓存的基本对象。
*
* @param key 缓存键值
* @return 缓存键值对应的数据
*/
public <T> T getCacheObject(String key) {
  ValueOperations<String, T> operation = redisTemplate.opsForValue();
  return operation.get(key);
}

/**
* 删除单个对象
*
* @param key
*/
public void deleteObject(String key) {
  redisTemplate.delete(key);
}

/**
* 删除集合对象
*
* @param collection
*/
public void deleteObject(Collection collection) {
  redisTemplate.delete(collection);
}

/**
* 缓存List数据
*
* @param key      缓存的键值
* @param dataList 待缓存的List数据
* @return 缓存的对象
*/
public <T> ListOperations<String, T> setCacheList(String key, List<T> dataList) {
  ListOperations listOperation = redisTemplate.opsForList();
  if (null != dataList) {
      int size = dataList.size();
      for (int i = 0; i < size; i++) {
          listOperation.leftPush(key, dataList.get(i));
      }
  }
  return listOperation;
}

/**
* 获得缓存的list对象
*
* @param key 缓存的键值
* @return 缓存键值对应的数据
*/
public <T> List<T> getCacheList(String key) {
  List<T> dataList = new ArrayList<>();
  ListOperations<String, T> listOperation = redisTemplate.opsForList();
  Long size = listOperation.size(key);

  for (int i = 0; i < size; i++) {
      dataList.add(listOperation.index(key, i));
  }
  return dataList;
}

/**
* 缓存Set
*
* @param key     缓存键值
* @param dataSet 缓存的数据
* @return 缓存数据的对象
*/
public <T> BoundSetOperations<String, T> setCacheSet(String key, Set<T> dataSet) {
  BoundSetOperations<String, T> setOperation = redisTemplate.boundSetOps(key);
  Iterator<T> it = dataSet.iterator();
  while (it.hasNext()) {
      setOperation.add(it.next());
  }
  return setOperation;
}

/**
* 获得缓存的set
*
* @param key
* @return
*/
public <T> Set<T> getCacheSet(String key) {
  Set<T> dataSet = new HashSet<>();
  BoundSetOperations<String, T> operation = redisTemplate.boundSetOps(key);
  dataSet = operation.members();
  return dataSet;
}

/**
* 缓存Map
*
* @param key
* @param dataMap
* @return
*/
public <T> HashOperations<String, String, T> setCacheMap(String key, Map<String, T> dataMap) {
  HashOperations hashOperations = redisTemplate.opsForHash();
  if (null != dataMap) {
      for (Map.Entry<String, T> entry : dataMap.entrySet()) {
          hashOperations.put(key, entry.getKey(), entry.getValue());
      }
  }
  return hashOperations;
}

/**
* 获得缓存的Map
*
* @param key
* @return
*/
public <T> Map<String, T> getCacheMap(String key) {
  Map<String, T> map = redisTemplate.opsForHash().entries(key);
  return map;
}

/**
* 获得缓存的基本对象列表
*
* @param pattern 字符串前缀
* @return 对象列表
*/
public Collection<String> keys(String pattern) {
  return redisTemplate.keys(pattern);
}

/**
* @param key
* @return
*/
public boolean haskey(String key) {
  return redisTemplate.hasKey(key);
}

public Long getExpire(String key) {
  return redisTemplate.getExpire(key);
}


public <T> ValueOperations<String, T> setBillObject(String key, List<Map<String, Object>> value) {
  ValueOperations<String, T> operation = redisTemplate.opsForValue();
  operation.set(key, (T) value);
  return operation;
}

/**
* 缓存list<Map<String, Object>>
*
* @param key      缓存的键值
* @param value    缓存的值
* @param timeout  时间
* @param timeUnit 时间颗粒度
* @return 缓存的对象
*/
public <T> ValueOperations<String, T> setBillObject(String key, List<Map<String, Object>> value, Integer timeout, TimeUnit timeUnit) {
  ValueOperations<String, T> operation = redisTemplate.opsForValue();
  operation.set(key, (T) value, timeout, timeUnit);
  return operation;
}

/**
* 缓存Map
*
* @param key
* @param dataMap
* @return
*/
public <T> HashOperations<String, String, T> setCKdBillMap(String key, Map<String, T> dataMap) {
  HashOperations hashOperations = redisTemplate.opsForHash();
  if (null != dataMap) {
      for (Map.Entry<String, T> entry : dataMap.entrySet()) {
          hashOperations.put(key, entry.getKey(), entry.getValue());
      }
  }
  return hashOperations;
}
}

4.测试

  @NoRepeatSubmit(name = "test") // 也可以不给名字,这样就会走默认名字
  @GetMapping("test")
  public Result test() {
      return Result.success("测试阶段!");
  }

15秒内重复点击就会给提示

这样就完成了一个防止重复提交、频繁申请的程序

参考:

https://blog.csdn.net/chengmin123456789/article/details/107982095

到此这篇关于Java后端防止频繁请求、重复提交的文章就介绍到这了,更多相关java重复提交内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

原文链接:https://blog.csdn.net/weixin_51444617/article/details/124079172

查看更多关于Java防止频繁请求、重复提交的操作代码(后端防抖操作)的详细内容...

  阅读:35次