好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

图像分类丨ILSVRC历届冠军网络[从AlexNet到SENet]

前言 深度卷积网络极大地推进深度学习各领域的发展,ILSVRC作为最具影响力的竞赛功不可没,促使了许多经典工作。我梳理了ILSVRC分类任务的各届冠军和亚军网络,简单介绍了它们的核心思想、网络架构及其实现。 代码主要来自:https://github.com/weiaicunzai/pytorch-cifar100

ImageNet和ILSVRC

ImageNet是一个超过15 million的图像数据集,大约有22,000类。

ILSVRC全称ImageNet Large-Scale Visual Recognition Challenge,从2010年开始举办到2017年最后一届,使用ImageNet数据集的一个子集,总共有1000类。

历届结果

评价标准

top1是指概率向量中最大的作为预测结果,若分类正确,则为正确;top5则只要概率向量中最大的前五名里有分类正确的,则为正确。

LeNet Gradient-Based Learning Applied to Document Recognition 网络架构

 
import torch.nn as nn
import torch.nn.functional as func
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, kernel_size=5)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
        self.fc1 = nn.Linear(16*16, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = func.relu(self.conv1(x))
        x = func.max_pool2d(x, 2)
        x = func.relu(self.conv2(x))
        x = func.max_pool2d(x, 2)
        x = x.view(x.size(0), -1)
        x = func.relu(self.fc1(x))
        x = func.relu(self.fc2(x))
        x = self.fc3(x)
        return x
 

AlexNet ImageNet Classification with Deep Convolutional Neural Networks 核心思想 AlexNet相比前人有以下改进: 1.采用ReLU激活函数 2.局部响应归一化LRN

3.Overlapping Pooling 4.引入Drop out 5.数据增强 6.多GPU并行 网络架构

代码实现
 
class AlexNet(nn.Module):
    def __init__(self, num_classes=NUM_CLASSES):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 96, kernel_size=11,padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(96, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(256, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
        )
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 2 * 2, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, 10),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), 256 * 2 * 2)
        x = self.classifier(x)
        return x
 

实验结果

ZFNet Visualizing and Understanding Convolutional Networks 核心思想

利用反卷积可视化CNN学到的特征。 1.Unpooling:池化操作不可逆,但通过记录池化最大值的位置可实现逆操作。 2.Rectification:ReLU 3.Filtering:使用原卷积核的转置版本。

网络架构

实验结果 特征可视化 :Layer2响应角落和边缘、颜色连接;Layer3有更复杂的不变性,捕获相似纹理;Layer4展示了明显的变化,跟类别更相关;Layer5看到整个物体。

训练过程特征演化 :低层特征较快收敛,高层到后面才开始变化。

特征不变性 :小变换在模型第一层变化明显,但在顶层影响较小。网络输出对翻转和缩放是稳定的,但除了旋转对称性的物体,输出对旋转并不是不变的。 遮挡敏感性 :当对象被遮挡,准确性会明显下降。 ImageNet结果

VGG Very Deep Convolutional Networks for Large-Scale Image Recognition 核心思想 重复使用3x3卷积和2x2池化增加网络深度。 网络架构 VGG19表示有19层conv或fc,参数量较大。

代码实现
 
cfg = {
    'A' : [64,     'M', 128,      'M', 256, 256,           'M', 512, 512,           'M', 512, 512,           'M'],
    'B' : [64, 64, 'M', 128, 128, 'M', 256, 256,           'M', 512, 512,           'M', 512, 512,           'M'],
    'D' : [64, 64, 'M', 128, 128, 'M', 256, 256, 256,      'M', 512, 512, 512,      'M', 512, 512, 512,      'M'],
    'E' : [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M']
}

def vgg19_bn():
    return VGG(make_layers(cfg['E'], batch_norm=True))

class VGG(nn.Module):

    def __init__(self, features, num_class=100):
        super().__init__()
        self.features = features

        self.classifier = nn.Sequential(
            nn.Linear(512, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, num_class)
        )

    def forward(self, x):
        output = self.features(x)
        output = output.view(output.size()[0], -1)
        output = self.classifier(output)

        return output

    def make_layers(cfg, batch_norm=False):
        layers = []

        input_channel = 3
        for l in cfg:
            if l == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
                continue

            layers += [nn.Conv2d(input_channel, l, kernel_size=3, padding=1)]

            if batch_norm:
                layers += [nn.BatchNorm2d(l)]

            layers += [nn.ReLU(inplace=True)]
            input_channel = l

        return nn.Sequential(*layers) 

实验结果

GoogLeNet(v1) Going Deeper with Convolutions 核心思想 * 提出Inception模块,可在保持计算成本的同时增加网络的深度和宽度。

代码实现
 
class Inception(nn.Module):
    def __init__(self, input_channels, n1x1, n3x3_reduce, n3x3, n5x5_reduce, n5x5, pool_proj):
        super().__init__()

        #1x1conv branch
        self.b1 = nn.Sequential(
            nn.Conv2d(input_channels, n1x1, kernel_size=1),
            nn.BatchNorm2d(n1x1),
            nn.ReLU(inplace=True)
        )

        #1x1conv -> 3x3conv branch
        self.b2 = nn.Sequential(
            nn.Conv2d(input_channels, n3x3_reduce, kernel_size=1),
            nn.BatchNorm2d(n3x3_reduce),
            nn.ReLU(inplace=True),
            nn.Conv2d(n3x3_reduce, n3x3, kernel_size=3, padding=1),
            nn.BatchNorm2d(n3x3),
            nn.ReLU(inplace=True)
        )

        #1x1conv -> 5x5conv branch
        #we use 2 3x3 conv filters stacked instead
        #of 1 5x5 filters to obtain the same receptive
        #field with fewer parameters
        self.b3 = nn.Sequential(
            nn.Conv2d(input_channels, n5x5_reduce, kernel_size=1),
            nn.BatchNorm2d(n5x5_reduce),
            nn.ReLU(inplace=True),
            nn.Conv2d(n5x5_reduce, n5x5, kernel_size=3, padding=1),
            nn.BatchNorm2d(n5x5, n5x5),
            nn.ReLU(inplace=True),
            nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1),
            nn.BatchNorm2d(n5x5),
            nn.ReLU(inplace=True)
        )

        #3x3pooling -> 1x1conv
        #same conv
        self.b4 = nn.Sequential(
            nn.MaxPool2d(3, stride=1, padding=1),
            nn.Conv2d(input_channels, pool_proj, kernel_size=1),
            nn.BatchNorm2d(pool_proj),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return torch.cat([self.b1(x), self.b2(x), self.b3(x), self.b4(x)], dim=1)
 

网络架构

 
```代码实现 

def googlenet(): return GoogleNet()

class GoogleNet(nn.Module):

 def __init__(self, num_class=100):
    super().__init__()
    self.prelayer = nn.Sequential(
        nn.Conv2d(3, 192, kernel_size=3, padding=1),
        nn.BatchNorm2d(192),
        nn.ReLU(inplace=True)
    )

    #although we only use 1 conv layer as prelayer,
    #we still use name a3, b3.......
    self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
    self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

    #"""In general, an Inception network is a network consisting of
    #modules of the above type stacked upon each other, with occasional
    #max-pooling layers with stride 2 to halve the resolution of the
    #grid"""
    self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

    self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
    self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
    self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
    self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
    self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

    self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
    self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

    #input feature size: 8*8*1024
    self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
    self.dropout = nn.Dropout2d(p=0.4)
    self.linear = nn.Linear(1024, num_class)

def forward(self, x):
    output = self.prelayer(x)
    output = self.a3(output)
    output = self.b3(output)

    output = self.maxpool(output)

    output = self.a4(output)
    output = self.b4(output)
    output = self.c4(output)
    output = self.d4(output)
    output = self.e4(output)

    output = self.maxpool(output)

    output = self.a5(output)
    output = self.b5(output)

    #"""It was found that a move from fully connected layers to
    #average pooling improved the top-1 accuracy by about 0.6%,
    #however the use of dropout remained essential even after
    #removing the fully connected layers."""
    output = self.avgpool(output)
    output = self.dropout(output)
    output = output.view(output.size()[0], -1)
    output = self.linear(output)

    return output 
 
**实验结果**
![](https://s4.51cto.com/images/blog/202101/06/f6aeff624118990818b70f390404edae.png)
**ResNet**
Deep Residual Learning for Image Recognition
**核心思想**
**为了解决深层网络难以训练的问题,提出了残差模块和深度残差网络**
       1.假设网络输入是,经学习的输出是,最终拟合目标是。
       2.深层网络相比浅层网络有一些层是多余的,若让多余层学习恒等变换,那么网络性能不该比浅层网络要差。
       3.传统网络训练目标,残差网络训练目标。
       4.为了学习恒等变换,传统网络要求网络学习,残差网络只需学习   。残差学习之所以有效是因为让网络学习比学习要容易。
![](https://s4.51cto.com/images/blog/202101/06/aeb76ef88d1dba11fd5f6e575fa38d8a.png)
* bottleneck
![](https://s4.51cto.com/images/blog/202101/06/67c1e11b2d485a8388889640d5778ffc.png)
* 代码实现
 

class BottleNeck(nn.Module): """Residual block for resnet over 50 layers

 """
expansion = 4
def __init__(self, in_channels, out_channels, stride=1):
    super().__init__()
    self.residual_function = nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(inplace=True),
        nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(inplace=True),
        nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False),
        nn.BatchNorm2d(out_channels * BottleNeck.expansion),
    )

    self.shortcut = nn.Sequential()

    if stride != 1 or in_channels != out_channels * BottleNeck.expansion:
        self.shortcut = nn.Sequential(
            nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False),
            nn.BatchNorm2d(out_channels * BottleNeck.expansion)
        )

def forward(self, x):
    return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x)) 
 
**网络架构**

![](https://s4.51cto.com/images/blog/202101/06/6cf8f5a94acbdcd48717fa0bf664427c.png)
![](https://s4.51cto.com/images/blog/202101/06/18d991b7d2e467c20fea18dcfe9ac0ed.png)
* 代码实现
 

def resnet152(): """ return a ResNet 152 object """ return ResNet(BottleNeck, [3, 8, 36, 3])

class ResNet(nn.Module):

 def __init__(self, block, num_block, num_classes=100):
    super().__init__()

    self.in_channels = 64

    self.conv1 = nn.Sequential(
        nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
        nn.BatchNorm2d(64),
        nn.ReLU(inplace=True))
    #we use a different inputsize than the original paper
    #so conv2_x's stride is 1
    self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
    self.conv3_x = self._make_layer(block, 128, num_block[1], 2)
    self.conv4_x = self._make_layer(block, 256, num_block[2], 2)
    self.conv5_x = self._make_layer(block, 512, num_block[3], 2)
    self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
    self.fc = nn.Linear(512 * block.expansion, num_classes)

def _make_layer(self, block, out_channels, num_blocks, stride):
    """make resnet layers(by layer i didnt mean this 'layer' was the
    same as a neuron netowork layer, ex. conv layer), one layer may
    contain more than one residual block

    Args:
        block: block type, basic block or bottle neck block
        out_channels: output depth channel number of this layer
        num_blocks: how many blocks per layer
        stride: the stride of the first block of this layer

    Return:
        return a resnet layer
    """

    # we have num_block blocks per layer, the first block
    # could be 1 or 2, other blocks would always be 1
    strides = [stride] + [1] * (num_blocks - 1)
    layers = []
    for stride in strides:
        layers.append(block(self.in_channels, out_channels, stride))
        self.in_channels = out_channels * block.expansion

    return nn.Sequential(*layers)

def forward(self, x):
    output = self.conv1(x)
    output = self.conv2_x(output)
    output = self.conv3_x(output)
    output = self.conv4_x(output)
    output = self.conv5_x(output)
    output = self.avg_pool(output)
    output = output.view(output.size(0), -1)
    output = self.fc(output)

    return output 
 
**实验结果**
![](https://s4.51cto.com/images/blog/202101/06/ef3c0226cf722cd8cd5db07de36e555e.png)
**ResNeXt**
Aggregated Residual Transformations for Deep Neural Networks
**核心思想**
* **通过重复构建block来聚合一组相同拓扑结构的特征,并提出一个新维度”cardinality“。**
* ResNeXt结合了VGG、ResNet重复堆叠模块和Inception的split-transform-merge的思想。
![](https://s4.51cto.com/images/blog/202101/06/2afba2836edc96fbb33aa8ea3ce55b79.png)
以下三者等价,文章采用第三种实现,其使用了组卷积。
![](https://s4.51cto.com/images/blog/202101/06/97c8551714a46ca9de2a10c6c6578c32.png)
* 代码实现 

CARDINALITY = 32 DEPTH = 4 BASEWIDTH = 64

class ResNextBottleNeckC(nn.Module): def init (self, in_channels, out_channels, stride): super(). init ()

     C = CARDINALITY #How many groups a feature map was splitted into

    #"""We note that the input/output width of the template is fixed as
    #256-d (Fig. 3), We note that the input/output width of the template
    #is fixed as 256-d (Fig. 3), and all widths are dou- bled each time
    #when the feature map is subsampled (see Table 1)."""
    D = int(DEPTH * out_channels / BASEWIDTH) #number of channels per group
    self.split_transforms = nn.Sequential(
        nn.Conv2d(in_channels, C * D, kernel_size=1, groups=C, bias=False),
        nn.BatchNorm2d(C * D),
        nn.ReLU(inplace=True),
        nn.Conv2d(C * D, C * D, kernel_size=3, stride=stride, groups=C, padding=1, bias=False),
        nn.BatchNorm2d(C * D),
        nn.ReLU(inplace=True),
        nn.Conv2d(C * D, out_channels * 4, kernel_size=1, bias=False),
        nn.BatchNorm2d(out_channels * 4),
    )

    self.shortcut = nn.Sequential()

    if stride != 1 or in_channels != out_channels * 4:
        self.shortcut = nn.Sequential(
            nn.Conv2d(in_channels, out_channels * 4, stride=stride, kernel_size=1, bias=False),
            nn.BatchNorm2d(out_channels * 4)
        )

def forward(self, x):
    return F.relu(self.split_transforms(x) + self.shortcut(x)) 
 
**网络架构**
![](https://s4.51cto.com/images/blog/202101/06/189147855a5200ee0b893f18065d017b.png)
* 代码实现
以下部分跟ResNet基本一致,重点关注ResNextBottleNeckC的实现。 

def resnext50(): """ return a resnext50(c32x4d) network """ return ResNext(ResNextBottleNeckC, [3, 4, 6, 3])

class ResNext(nn.Module): def init (self, block, num_blocks, class_names=100): super(). init () self.in_channels = 64

     self.conv1 = nn.Sequential(
        nn.Conv2d(3, 64, 3, stride=1, padding=1, bias=False),
        nn.BatchNorm2d(64),
        nn.ReLU(inplace=True)
    )
    self.conv2 = self._make_layer(block, num_blocks[0], 64, 1)
    self.conv3 = self._make_layer(block, num_blocks[1], 128, 2)
    self.conv4 = self._make_layer(block, num_blocks[2], 256, 2)
    self.conv5 = self._make_layer(block, num_blocks[3], 512, 2)
    self.avg = nn.AdaptiveAvgPool2d((1, 1))
    self.fc = nn.Linear(512 * 4, 100)

def forward(self, x):
    x = self.conv1(x)
    x = self.conv2(x)
    x = self.conv3(x)
    x = self.conv4(x)
    x = self.conv5(x)
    x = self.avg(x)
    x = x.view(x.size(0), -1)
    x = self.fc(x)
    return x

def _make_layer(self, block, num_block, out_channels, stride):
    """Building resnext block
    Args:
        block: block type(default resnext bottleneck c)
        num_block: number of blocks per layer
        out_channels: output channels per block
        stride: block stride

    Returns:
        a resnext layer
    """
    strides = [stride] + [1] * (num_block - 1)
    layers = []
    for stride in strides:
        layers.append(block(self.in_channels, out_channels, stride))
        self.in_channels = out_channels * 4

    return nn.Sequential(*layers) 
 **实验结果**
![](https://s4.51cto.com/images/blog/202101/06/bc2fae20659aa7c330e0db0812df599e.png)
**SENet**
Squeeze-and-Excitation Networks
**核心思想**
* 卷积操作融合了空间和特征通道信息。大量工作研究了空间部分,而**本文重点关注特征通道的关系,并提出了Squeeze-and-Excitation(SE)block,对通道间的依赖关系进行建模,自适应校准通道方面的特征响应**。
*** SE block**
表示transformation(一系列卷积操作);表示squeeze,产生通道描述;表示excitation,通过参数W来建模通道的重要性。表示reweight,将excitation输出的权重逐乘以先前特征,完成特征重标定。
![](https://s4.51cto.com/images/blog/202101/06/af3447c8f3719d3215a8640b633dcd5f.png)
* SE-ResNet Module
![](https://s4.51cto.com/images/blog/202101/06/068952fdddd14d8d14f127e686106ae7.png)
* 代码实现 

class BottleneckResidualSEBlock(nn.Module): expansion = 4

def init (self, in_channels, out_channels, stride, r=16): super(). init ()

 self.residual = nn.Sequential(
    nn.Conv2d(in_channels, out_channels, 1),
    nn.BatchNorm2d(out_channels),
    nn.ReLU(inplace=True),

    nn.Conv2d(out_channels, out_channels, 3, stride=stride, padding=1),
    nn.BatchNorm2d(out_channels),
    nn.ReLU(inplace=True),

    nn.Conv2d(out_channels, out_channels * self.expansion, 1),
    nn.BatchNorm2d(out_channels * self.expansion),
    nn.ReLU(inplace=True)
)

self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
    nn.Linear(out_channels * self.expansion, out_channels * self.expansion // r),
    nn.ReLU(inplace=True),
    nn.Linear(out_channels * self.expansion // r, out_channels * self.expansion),
    nn.Sigmoid()
)

self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * self.expansion:
    self.shortcut = nn.Sequential(
        nn.Conv2d(in_channels, out_channels * self.expansion, 1, stride=stride),
        nn.BatchNorm2d(out_channels * self.expansion)
    ) 

def forward(self, x):

 shortcut = self.shortcut(x)

residual = self.residual(x)
squeeze = self.squeeze(residual)
squeeze = squeeze.view(squeeze.size(0), -1)
excitation = self.excitation(squeeze)
excitation = excitation.view(residual.size(0), residual.size(1), 1, 1)

x = residual * excitation.expand_as(residual) + shortcut

return F.relu(x) 
 
**网络架构**
![](https://s4.51cto.com/images/blog/202101/06/fe95c5c8e554ced322b6e523e1d53f28.png)
* 代码实现
 

def seresnet50(): return SEResNet(BottleneckResidualSEBlock, [3, 4, 6, 3])

class SEResNet(nn.Module):

 def __init__(self, block, block_num, class_num=100):
    super().__init__()

    self.in_channels = 64

    self.pre = nn.Sequential(
        nn.Conv2d(3, 64, 3, padding=1),
        nn.BatchNorm2d(64),
        nn.ReLU(inplace=True)
    )

    self.stage1 = self._make_stage(block, block_num[0], 64, 1)
    self.stage2 = self._make_stage(block, block_num[1], 128, 2)
    self.stage3 = self._make_stage(block, block_num[2], 256, 2)
    self.stage4 = self._make_stage(block, block_num[3], 516, 2)

    self.linear = nn.Linear(self.in_channels, class_num)

def forward(self, x):
    x = self.pre(x)

    x = self.stage1(x)
    x = self.stage2(x)
    x = self.stage3(x)
    x = self.stage4(x)

    x = F.adaptive_avg_pool2d(x, 1)
    x = x.view(x.size(0), -1)

    x = self.linear(x)

    return x

def _make_stage(self, block, num, out_channels, stride):

    layers = []
    layers.append(block(self.in_channels, out_channels, stride))
    self.in_channels = out_channels * block.expansion

    while num - 1:
        layers.append(block(self.in_channels, out_channels, 1))
        num -= 1

    return nn.Sequential(*layers) 
 

**实验结果**
![](https://s4.51cto.com/images/blog/202101/06/f73ca0170aaa9923983535279dc8d684.png)
**总结**
 一、小结
1.LeNet[1998]:CNN的鼻祖。
2.AlexNet[2012]:第一个深度CNN。
3.ZFNet[2012]:通过DeconvNet可视化CNN学习到的特征。
4.VGG[2014]:重复堆叠3x3卷积增加网络深度。
5.GoogLeNet[2014]:提出Inception模块,在控制参数和计算量的前提下,增加网络的深度与宽度。
6.ResNet[2015]:提出残差网络,解决了深层网络的优化问题。
7.ResNeXt[2016]:ResNet和Inception的结合体,Inception中每个分支结构相同,无需人为设计。
8.SENet[2017]:提出SE block,关注特征的通道关系。
二、经典模型中结构、参数对比
![](https://s4.51cto.com/images/blog/202101/06/5af230cfd2678315a21b8a501d734f95.png)

**参考**
* paper
[1]LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

[2]Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

[3]Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European conference on computer vision. springer, Cham, 2014: 818-833.

[4]Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

[5]Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.

[6]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

[7]Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.

[8]Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.

* **blog**

ImageNet历年冠军和相关CNN模型

残差网络ResNet笔记

(二)计算机视觉四大基本任务(分类、定位、检测、分割)

论文笔记:CNN经典结构2(WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet)

论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

深度学习在计算机视觉领域(包括图像,视频,3-D点云,深度图)的应用一览 

查看更多关于图像分类丨ILSVRC历届冠军网络[从AlexNet到SENet]的详细内容...

  阅读:48次