一、绘制带趋势线的散点图
实现功能:
在散点图上添加趋势线(线性拟合线)反映两个变量是正相关、负相关或者无相关关系。
实现代码:
import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action='once') plt.style.use('seaborn-whitegrid') sns.set_style("whitegrid") print(mpl.__version__) print(sns.__version__) def draw_scatter(file): ? ? # Import Data ? ? df = pd.read_csv(file) ? ? df_select = df.loc[df.cyl.isin([4, 8]), :] ? ? # Plot ? ? gridobj = sns.lmplot( ? ? ? ? x="displ", ? ? ? ? y="hwy", ? ? ? ? hue="cyl", ? ? ? ? data=df_select, ? ? ? ? height=7, ? ? ? ? aspect=1.6, ? ? ? ? palette='Set1', ? ? ? ? scatter_kws=dict(s=60, linewidths=.7, edgecolors='black')) ? ? # Decorations ? ? sns.set(style="whitegrid", font_scale=1.5) ? ? gridobj.set(xlim=(0.5, 7.5), ylim=(10, 50)) ? ? gridobj.fig.set_size_inches(10, 6) ? ? plt.tight_layout() ? ? plt.title("Scatterplot with line of best fit grouped by number of cylinders") ? ? plt.show() draw_scatter("F:\数据杂坛\datasets\mpg_ggplot2.csv")
实现效果:
在散点图上添加趋势线(线性拟合线)反映两个变量是正相关、负相关或者无相关关系。红蓝两组数据分别绘制出最佳的线性拟合线。
二、绘制边缘直方图
实现功能:
python绘制边缘直方图,用于展示X和Y之间的关系、及X和Y的单变量分布情况,常用于数据探索分析。
实现代码:
import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action='once') plt.style.use('seaborn-whitegrid') sns.set_style("whitegrid") print(mpl.__version__) print(sns.__version__) def draw_Marginal_Histogram(file): ? ? # Import Data ? ? df = pd.read_csv(file) ? ? # Create Fig and gridspec ? ? fig = plt.figure(figsize=(10, 6), dpi=100) ? ? grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2) ? ? # Define the axes ? ? ax_main = fig.add_subplot(grid[:-1, :-1]) ? ? ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[]) ? ? ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[]) ? ? # Scatterplot on main ax ? ? ax_main.scatter('displ', ? ? ? ? ? ? ? ? ? ? 'hwy', ? ? ? ? ? ? ? ? ? ? s=df.cty * 4, ? ? ? ? ? ? ? ? ? ? c=df.manufacturer.astype('category').cat.codes, ? ? ? ? ? ? ? ? ? ? alpha=.9, ? ? ? ? ? ? ? ? ? ? data=df, ? ? ? ? ? ? ? ? ? ? cmap="Set1", ? ? ? ? ? ? ? ? ? ? edgecolors='gray', ? ? ? ? ? ? ? ? ? ? linewidths=.5) ? ? # histogram on the right ? ? ax_bottom.hist(df.displ, ? ? ? ? ? ? ? ? ? ?40, ? ? ? ? ? ? ? ? ? ?histtype='stepfilled', ? ? ? ? ? ? ? ? ? ?orientation='vertical', ? ? ? ? ? ? ? ? ? ?color='#098154') ? ? ax_bottom.invert_yaxis() ? ? # histogram in the bottom ? ? ax_right.hist(df.hwy, ? ? ? ? ? ? ? ? ? 40, ? ? ? ? ? ? ? ? ? histtype='stepfilled', ? ? ? ? ? ? ? ? ? orientation='horizontal', ? ? ? ? ? ? ? ? ? color='#098154') ? ? # Decorations ? ? ax_main.set(title='Scatterplot with Histograms \n displ vs hwy', ? ? ? ? ? ? ? ? xlabel='displ', ? ? ? ? ? ? ? ? ylabel='hwy') ? ? ax_main.title.set_fontsize(10) ? ? for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ? ? ? ? ? ? ? ? ?ax_main.get_xticklabels() + ax_main.get_yticklabels()): ? ? ? ? item.set_fontsize(10) ? ? xlabels = ax_main.get_xticks().tolist() ? ? ax_main.set_xticklabels(xlabels) ? ? plt.show() draw_Marginal_Histogram("F:\数据杂坛\datasets\mpg_ggplot2.csv")
实现效果:
到此这篇关于python可视化分析绘制带趋势线的散点图和边缘直方图的文章就介绍到这了,更多相关python绘制内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
查看更多关于python可视化分析绘制带趋势线的散点图和边缘直方图的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://www.haodehen.cn/did16361