好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

TensorFlow:TensorBoard可视化

在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况。

TensorBoard的输入是tensorflow保存summary data的日志文件。日志文件名的形式如:events.out.tfevents.1467809796.lei-All-Series 或 events.out.tfevents.1467809800.lei-All-Series。TensorBoard可读的summary data有scalar,images,audio,histogram和graph。

代码测试

"""A simple MNIST classifier which displays summaries in TensorBoard.This is an unimpressive MNIST model, but it is a good example of using tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of naming summary tags so that they are grouped meaningfully in TensorBoard. It demonstrates the functionality of every TensorBoard dashboard.

"""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

flags = tf.app.flags

FLAGS = flags.FLAGS

flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '

                     'for unit testing.')

flags.DEFINE_integer('max_steps', 1000, 'Number of steps to run trainer.')

flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')

flags.DEFINE_float('dropout', 0.9, 'Keep probability for training dropout.')

flags.DEFINE_string('data_dir', '/tmp/data', 'Directory for storing data')

flags.DEFINE_string('summaries_dir', '/tmp/mnist_logs', 'Summaries directory')

def train():

  # Import data

  mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True,

                                    fake_data=FLAGS.fake_data)

  sess = tf.InteractiveSession()

  # Create a multilayer model.

  # Input placehoolders

  with tf.name_scope('input'):

    x = tf.placeholder(tf.float32, [None, 784], name='x-input')

    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])

    tf.image_summary('input', image_shaped_input, 10)

    y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

    keep_prob = tf.placeholder(tf.float32)

    tf.scalar_summary('dropout_keep_probability', keep_prob)

  # We can't initialize these variables to 0 - the network will get stuck.

  def weight_variable(shape):

    """Create a weight variable with appropriate initialization."""

    initial = tf.truncated_normal(shape, stddev=0.1)

    return tf.Variable(initial)

  def bias_variable(shape):

    """Create a bias variable with appropriate initialization."""

    initial = tf.constant(0.1, shape=shape)

    return tf.Variable(initial)

  def variable_summaries(var, name):

    """Attach a lot of summaries to a Tensor."""

    with tf.name_scope('summaries'):

      mean = tf.reduce_mean(var)

      tf.scalar_summary('mean/' + name, mean)

      with tf.name_scope('stddev'):

        stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))

      tf.scalar_summary('sttdev/' + name, stddev)

      tf.scalar_summary('max/' + name, tf.reduce_max(var))

      tf.scalar_summary('min/' + name, tf.reduce_min(var))

      tf.histogram_summary(name, var)

  def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):

    """Reusable code for making a simple neural net layer.

    It does a matrix multiply, bias add, and then uses relu to nonlinearize.

    It also sets up name scoping so that the resultant graph is easy to read, and

    adds a number of summary ops.

    """

    # Adding a name scope ensures logical grouping of the layers in the graph.

    with tf.name_scope(layer_name):

      # This Variable will hold the state of the weights for the layer

      with tf.name_scope('weights'):

        weights = weight_variable([input_dim, output_dim])

        variable_summaries(weights, layer_name + '/weights')

      with tf.name_scope('biases'):

        biases = bias_variable([output_dim])

        variable_summaries(biases, layer_name + '/biases')

      with tf.name_scope('Wx_plus_b'):

        preactivate = tf.matmul(input_tensor, weights) + biases

        tf.histogram_summary(layer_name + '/pre_activations', preactivate)

      activations = act(preactivate, 'activation')

      tf.histogram_summary(layer_name + '/activations', activations)

      return activations

  hidden1 = nn_layer(x, 784, 500, 'layer1')

  dropped = tf.nn.dropout(hidden1, keep_prob)

  y = nn_layer(dropped, 500, 10, 'layer2', act=tf.nn.softmax)

  with tf.name_scope('cross_entropy'):

    diff = y_ * tf.log(y)

    with tf.name_scope('total'):

      cross_entropy = -tf.reduce_mean(diff)

    tf.scalar_summary('cross entropy', cross_entropy)

  with tf.name_scope('train'):

    train_step = tf.train.AdamOptimizer(

        FLAGS.learning_rate).minimize(cross_entropy)

  with tf.name_scope('accuracy'):

    with tf.name_scope('correct_prediction'):

      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

    with tf.name_scope('accuracy'):

      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    tf.scalar_summary('accuracy', accuracy)

  # Merge all the summaries and write them out to /tmp/mnist_logs (by default)

  merged = tf.merge_all_summaries()

  train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train', sess.graph)

  test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')

  tf.initialize_all_variables().run()

  # Train the model, and also write summaries.

  # Every 10th step, measure test-set accuracy, and write test summaries

  # All other steps, run train_step on training data, & add training summaries

  def feed_dict(train):

    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""

    if train or FLAGS.fake_data:

      xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)

      k = FLAGS.dropout

    else:

      xs, ys = mnist.test.images, mnist.test.labels

      k = 1.0

    return {x: xs, y_: ys, keep_prob: k}

  for i in range(FLAGS.max_steps):

    if i % 10 == 0:  # Record summaries and test-set accuracy

      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))

      test_writer.add_summary(summary, i)

      print('Accuracy at step %s: %s' % (i, acc))

    else: # Record train set summarieis, and train

      summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))

      train_writer.add_summary(summary, i)

def main(_):

  if tf.gfile.Exists(FLAGS.summaries_dir):

    tf.gfile.DeleteRecursively(FLAGS.summaries_dir)

  tf.gfile.MakeDirs(FLAGS.summaries_dir)

  train()

if __name__ == '__main__':

  tf.app.run()

运行上述代码之后调用TensorBoard可视化运行结果,

tensorboard --logdir=/tmp/mnist_logs/train/ 

打开链接 http://0.0.0.0:6006

EVENTS是训练参数统计显示,可以看到整个训练过程中,各个参数的变换情况

GRAPH网络结构显示

HISTOGRAM训练过程参数分布情况显示

查看更多关于TensorFlow:TensorBoard可视化的详细内容...

  阅读:27次