前言
Android缓存机制:如果没有缓存,在大量的网络请求从远程获取图片时会造成网络流量的浪费,加载速度较慢,用户体验不好;
今天我们就来聊聊Glide的缓存机制
一、Glide中缓存概念简述
Glide将它分成了两个模块,一个是内存缓存,一个是硬盘缓存;
1、内存缓存
内存缓存又分为两级,一级是LruCache缓存,一级是弱引用缓存 内存缓存的作用:防止应用重复将图片数据读取到内存当中。 LruCache缓存:不在使用中的图片使用LruCache来进行缓存。 弱引用缓存:把正在使用中的图片使用弱引用来进行缓存,这样的目的保护正在使用的资源不会被LruCache算法回收。2、硬盘缓存
硬盘缓存的作用:防止应用重复从网络或其他地方重复下载和读取数据;
3、图片请求步骤
开始一个新的图片请求之前检查以下多级的缓存:
内存缓存:该图片是否最近被加载过并仍存在于内存中?即LruCache缓存; 活动资源:现在是否有另一个 View 正在展示这张图片?也就是弱引用缓存; 资源类型:该图片是否之前曾被解码、转换并写入过磁盘缓存? 数据来源:构建这个图片的资源是否之前曾被写入过文件缓存? 前两步检查图片是否在内存中,如果是则直接返回图片。后两步则检查图片是否在磁盘上,以便快速但异步地返回图片; 如果四个步骤都未能找到图片,则Glide会返回到原始资源以取回数据(原始文件,Uri, Url等); 图片存的顺序是:弱引用、内存、磁盘; 图片取的顺序是:内存、弱引用、磁盘;4、Glide中Bitmap复用机制
Bitmap复用机制:将已经不需要使用的数据空间重新拿来使用,减少内存抖动(指在短时间内有大量的对象被创建或者被回收的现象); BitmapFactory.Options.inMutable是Glide能够复用Bitmap的基石,是BitmapFactory提供的一个参数,表示该Bitmap是可变的,支持复用的。BitmapFactory.Options中提供了两个属性:inMutable、inBitmap。当进行Bitmap复用时,需要设置inMutable为true,inBitmap设置被复用的已经存在的Bitmap。Bitmap复用池使用LRU算法实现;二、缓存源码流程
memory cache和disk cache在Glide创建的时候也被创建了,Glide创建的代码在GlideBuilder.build(Context)方法
@NonNull Glide build(@NonNull Context context) { if (memoryCache == null) { memoryCache = new LruResourceCache(memorySizeCalculator.getMemoryCacheSize()); } if (diskCacheFactory == null) { diskCacheFactory = new InternalCacheDiskCacheFactory(context); } if (engine == null) { engine = new Engine( memoryCache, diskCacheFactory, ...); } return new Glide( ... memoryCache, ...); }
1、内存缓存-memoryCache
通过代码可以看到 memoryCache 被放入 Engine 和 Glide 实例中。在Engine中利用memoryCache进行存取操作,Glide 实例中的memoryCache是用来在内存紧张的时候,通知memoryCache释放内存。Glide实现了ComponentCallbacks2接口,在Glide创建完成后,通过applicationContext.registerComponentCallbacks(glide)似的 Glide 实例可以监听内存紧张的信号。
// Glide @Override public void onTrimMemory(int level) { trimMemory(level); } public void trimMemory(int level) { // Engine asserts this anyway when removing resources, fail faster and consistently Util.assertMainThread(); // memory cache needs to be trimmed before bitmap pool to trim re-pooled Bitmaps too. See #687. memoryCache.trimMemory(level); bitmapPool.trimMemory(level); arrayPool.trimMemory(level); }
memoryCache是一个使用LRU(least recently used)算法实现的内存缓存类LruResourceCache,继承至LruCache类,并实现了MemoryCache接口。LruCache定义了LRU算法实现相关的操作,而MemoryCache定义的是内存缓存相关的操作。
LruCache 的实现是利用了 LinkedHashMap 的这种数据结构的一个特性( accessOrder=true 基于访问顺序 )再加上对 LinkedHashMap 的数据操作上锁实现的缓存策略。
当调用 put()方法时,就会在集合中添加元素,并调用
trimToSize()判断缓存是否已满,如果满了就用 LinkedHashMap 的迭代器删除队尾元素,即近期最少访问的元素。
当调用 get()方法访问缓存对象时,就会调用 LinkedHashMap 的 get()方法获得对应集合元素,同时会更新该元素到队头
2、磁盘缓存
diskCacheFactory是创建DiskCache的Factory,DiskCache接口定义
public interface DiskCache { interface Factory { /** 250 MB of cache. */ int DEFAULT_DISK_CACHE_SIZE = 250 * 1024 * 1024; String DEFAULT_DISK_CACHE_DIR = "image_manager_disk_cache"; @Nullable DiskCache build(); } interface Writer { boolean write(@NonNull File file); } @Nullable File get(Key key); void put(Key key, Writer writer); @SuppressWarnings("unused") void delete(Key key); void clear(); }
接着再来看下DiskCache.Factory的默认实现:InternalCacheDiskCacheFactory
public final class InternalCacheDiskCacheFactory extends DiskLruCacheFactory { public InternalCacheDiskCacheFactory(Context context) { this(context, DiskCache.Factory.DEFAULT_DISK_CACHE_DIR, DiskCache.Factory.DEFAULT_DISK_CACHE_SIZE); } public InternalCacheDiskCacheFactory(Context context, long diskCacheSize) { this(context, DiskCache.Factory.DEFAULT_DISK_CACHE_DIR, diskCacheSize); } public InternalCacheDiskCacheFactory(final Context context, final String diskCacheName, long diskCacheSize) { super(new CacheDirectoryGetter() { @Override public File getCacheDirectory() { File cacheDirectory = context.getCacheDir(); if (cacheDirectory == null) { return null; } if (diskCacheName != null) { return new File(cacheDirectory, diskCacheName); } return cacheDirectory; } }, diskCacheSize); } }
由以上代码可以看出:默认会创建一个250M的缓存目录,其路径为/data/data/{package}/cache/image_manager_disk_cache/
继续看其父类DiskLruCacheFactory的代码
public class DiskLruCacheFactory implements DiskCache.Factory { private final long diskCacheSize; private final CacheDirectoryGetter cacheDirectoryGetter; public interface CacheDirectoryGetter { File getCacheDirectory(); } ... public DiskLruCacheFactory(CacheDirectoryGetter cacheDirectoryGetter, long diskCacheSize) { this.diskCacheSize = diskCacheSize; this.cacheDirectoryGetter = cacheDirectoryGetter; } @Override public DiskCache build() { File cacheDir = cacheDirectoryGetter.getCacheDirectory(); if (cacheDir == null) { return null; } if (!cacheDir.mkdirs() && (!cacheDir.exists() || !cacheDir.isDirectory())) { return null; } return DiskLruCacheWrapper.create(cacheDir, diskCacheSize); } }
DiskLruCacheFactory.build()方法会返回一个DiskLruCacheWrapper类的实例,看下DiskLruCacheWrapper的实现
public class DiskLruCacheWrapper implements DiskCache { private static final String TAG = "DiskLruCacheWrapper"; private static final int APP_VERSION = 1; private static final int VALUE_COUNT = 1; private static DiskLruCacheWrapper wrapper; private final SafeKeyGenerator safeKeyGenerator; private final File directory; private final long maxSize; private final DiskCacheWriteLocker writeLocker = new DiskCacheWriteLocker(); private DiskLruCache diskLruCache; @SuppressWarnings("deprecation") public static DiskCache create(File directory, long maxSize) { return new DiskLruCacheWrapper(directory, maxSize); } @Deprecated @SuppressWarnings({"WeakerAccess", "DeprecatedIsStillUsed"}) protected DiskLruCacheWrapper(File directory, long maxSize) { this.directory = directory; this.maxSize = maxSize; this.safeKeyGenerator = new SafeKeyGenerator(); } private synchronized DiskLruCache getDiskCache() throws IOException { if (diskLruCache == null) { diskLruCache = DiskLruCache.open(directory, APP_VERSION, VALUE_COUNT, maxSize); } return diskLruCache; } @Override public File get(Key key) { String safeKey = safeKeyGenerator.getSafeKey(key); File result = null; try { final DiskLruCache.Value value = getDiskCache().get(safeKey); if (value != null) { result = value.getFile(0); } } catch (IOException e) { ... } return result; } @Override public void put(Key key, Writer writer) { String safeKey = safeKeyGenerator.getSafeKey(key); writeLocker.acquire(safeKey); try { try { DiskLruCache diskCache = getDiskCache(); Value current = diskCache.get(safeKey); ... DiskLruCache.Editor editor = diskCache.edit(safeKey); ... try { File file = editor.getFile(0); if (writer.write(file)) { editor.commit(); } } finally { editor.abortUnlessCommitted(); } } catch (IOException e) { ... } } finally { writeLocker.release(safeKey); } } ... }
里面包装了一个DiskLruCache,该类主要是为DiskLruCache提供了一个根据Key生成safeKey的SafeKeyGenerator以及写锁DiskCacheWriteLocker。
回到GlideBuilder.build(Context)中,diskCacheFactory会被传进Engine中,在Engine的构造方法中会被包装成为一个LazyDiskCacheProvider,在被需要的时候调用getDiskCache()方法,这样就会调用factory的build()方法返回一个DiskCache。代码如下:
private static class LazyDiskCacheProvider implements DecodeJob.DiskCacheProvider { private final DiskCache.Factory factory; private volatile DiskCache diskCache; LazyDiskCacheProvider(DiskCache.Factory factory) { this.factory = factory; } ... @Override public DiskCache getDiskCache() { if (diskCache == null) { synchronized (this) { if (diskCache == null) { diskCache = factory.build(); } if (diskCache == null) { diskCache = new DiskCacheAdapter(); } } } return diskCache; } }
LazyDiskCacheProvider会在Engine后面的初始化流程中作为入参传到DecodeJobFactory的构造器。在DecodeJobFactory创建DecodeJob时也会作为入参会传进去,DecodeJob中会以全局变量保存此LazyDiskCacheProvider,在资源加载完毕并展示后,会进行缓存的存储。同时,DecodeJob也会在DecodeHelper初始化时,将此DiskCacheProvider设置进去,供ResourceCacheGenerator、DataCacheGenerator读取缓存,供SourceGenerator写入缓存
3、 ActiveResources
ActiveResources在Engine的构造器中被创建,在ActiveResources的构造器中会启动一个后台优先级级别(THREAD_PRIORITY_BACKGROUND)的线程,在该线程中会调用cleanReferenceQueue()方法一直循环清除ReferenceQueue中的将要被GC的Resource。
final class ActiveResources { private final boolean isActiveResourceRetentionAllowed; private final Executor monitorClearedResourcesExecutor; @VisibleForTesting final Map<Key, ResourceWeakReference> activeEngineResources = new HashMap<>(); private final ReferenceQueue<EngineResource<?>> resourceReferenceQueue = new ReferenceQueue<>(); private volatile boolean isShutdown; ActiveResources(boolean isActiveResourceRetentionAllowed) { this( isActiveResourceRetentionAllowed, java.util.concurrent.Executors.newSingleThreadExecutor( new ThreadFactory() { @Override public Thread newThread(@NonNull final Runnable r) { return new Thread( new Runnable() { @Override public void run() { Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); r.run(); } }, "glide-active-resources"); } })); } @VisibleForTesting ActiveResources( boolean isActiveResourceRetentionAllowed, Executor monitorClearedResourcesExecutor) { this.isActiveResourceRetentionAllowed = isActiveResourceRetentionAllowed; this.monitorClearedResourcesExecutor = monitorClearedResourcesExecutor; monitorClearedResourcesExecutor.execute( new Runnable() { @Override public void run() { cleanReferenceQueue(); } }); } @SuppressWarnings("WeakerAccess") @Synthetic void cleanReferenceQueue() { while (!isShutdown) { try { ResourceWeakReference ref = (ResourceWeakReference) resourceReferenceQueue.remove(); cleanupActiveReference(ref); // This section for testing only. DequeuedResourceCallback current = cb; if (current != null) { current.onResourceDequeued(); } // End for testing only. } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } } }
先来看看ActiveResources的activate方法(保存)、deactivate方法(删除)的方法
synchronized void activate(Key key, EngineResource<?> resource) { ResourceWeakReference toPut = new ResourceWeakReference( key, resource, resourceReferenceQueue, isActiveResourceRetentionAllowed); ResourceWeakReference removed = activeEngineResources.put(key, toPut); if (removed != null) { removed.reset(); } } synchronized void deactivate(Key key) { ResourceWeakReference removed = activeEngineResources.remove(key); if (removed != null) { removed.reset(); } }
activate方法会将参数封装成为一个ResourceWeakReference,然后放入map中,如果对应的key之前有值,那么调用之前值的reset方法进行清除。deactivate方法先在map中移除,然后调用resource的reset方法进行清除。ResourceWeakReference继承WeakReference,内部只是保存了Resource的一些属性。
static final class ResourceWeakReference extends WeakReference<EngineResource<?>> { @SuppressWarnings("WeakerAccess") @Synthetic final Key key; @SuppressWarnings("WeakerAccess") @Synthetic final boolean isCacheable; @Nullable @SuppressWarnings("WeakerAccess") @Synthetic Resource<?> resource; @Synthetic @SuppressWarnings("WeakerAccess") ResourceWeakReference( @NonNull Key key, @NonNull EngineResource<?> referent, @NonNull ReferenceQueue<? super EngineResource<?>> queue, boolean isActiveResourceRetentionAllowed) { super(referent, queue); this.key = Preconditions.checkNotNull(key); this.resource = referent.isCacheable() && isActiveResourceRetentionAllowed ? Preconditions.checkNotNull(referent.getResource()) : null; isCacheable = referent.isCacheable(); } }
构造方法中调用了super(referent, queue),这样做可以让将要被GC的对象放入到ReferenceQueue中。而ActiveResources.cleanReferenceQueue()方法会一直尝试从queue中获取将要被GC的resource,然后调用cleanupActiveReference方法将resource从activeEngineResources中移除。cleanupActiveReference源码如下:
void cleanupActiveReference(@NonNull ResourceWeakReference ref) { synchronized (listener) { synchronized (this) { // 移除active资源 activeEngineResources.remove(ref.key); if (!ref.isCacheable || ref.resource == null) { return; } // 构造新的 Resource EngineResource<?> newResource = new EngineResource<>(ref.resource, /*isCacheable=*/ true, /*isRecyclable=*/ false); newResource.setResourceListener(ref.key, listener); // 回调Engine的onResourceReleased方法 // 这会导致此资源从active变成memory cache状态 listener.onResourceReleased(ref.key, newResource); } } }
Engine实现了EngineResource.ResourceListener,此处的listener就是Engine,最终会回调Engine.onResourceReleased
@Override public synchronized void onResourceReleased(Key cacheKey, EngineResource<?> resource) { activeResources.deactivate(cacheKey); if (resource.isCacheable()) { cache.put(cacheKey, resource); } else { resourceRecycler.recycle(resource); } }
如果资源可以被缓存,则缓存到 memory cache,否则对资源进行回收
4、磁盘缓存读取
我们分析下缓存的存取代码。我们看下
public synchronized <R> LoadStatus load(...) { EngineKey key = keyFactory.buildKey(model, signature, width, height, transformations, resourceClass, transcodeClass, options); EngineResource<?> active = loadFromActiveResources(key, isMemoryCacheable); if (active != null) { cb.onResourceReady(active, DataSource.MEMORY_CACHE); return null; } EngineResource<?> cached = loadFromCache(key, isMemoryCacheable); if (cached != null) { cb.onResourceReady(cached, DataSource.MEMORY_CACHE); return null; } EngineJob<?> current = jobs.get(key, onlyRetrieveFromCache); if (current != null) { current.addCallback(cb, callbackExecutor); return new LoadStatus(cb, current); } EngineJob<R> engineJob = engineJobFactory.build(...); DecodeJob<R> decodeJob = decodeJobFactory.build(...); jobs.put(key, engineJob); engineJob.addCallback(cb, callbackExecutor); engineJob.start(decodeJob); return new LoadStatus(cb, engineJob); }
缓存需要根据EngineKey去存取,先看下EngineKey的构造方法
EngineKey( Object model, Key signature, int width int height, Map<Class<?>, Transformation<?>> transformations, Class<?> resourceClass, Class<?> transcodeClass, Options options)model:load方法传的参数; signature:BaseRequestOptions的成员变量,默认会是EmptySignature.obtain() 在加载本地resource资源时会变成ApplicationVersionSignature.obtain(context); width、height:如果没有指定override(int size),那么将得到view的size; transformations:默认会基于ImageView的scaleType设置对应的四个Transformation; 如果指定了transform,那么就基于该值进行设置; resourceClass:解码后的资源,如果没有asBitmap、asGif,一般会是Object; transcodeClass:最终要转换成的数据类型,根据as方法确定,加载本地res或者网络URL,都会调用asDrawable,所以为Drawable options:如果没有设置过transform,此处会根据ImageView的scaleType默认指定一个option; 所以,在多次加载同一个model的过程中,只要上述任何一个参数有改变,都不会认为是同一个key;
回到Engine.load方法,从缓存加载成功后的回调cb.onResourceReady(cached, DataSource.MEMORY_CACHE);可以看到:active状态的资源和memory cache状态的资源都是DataSource.MEMORY_CACHE,并且加载的资源都是 EngineResource 对象,该对象内部采用了引用计数去判断资源是否被释放,如果引用计数为0,那么会调用listener.onResourceReleased(key, this)方法通知外界此资源已经释放了。这里的listener是ResourceListener类型的接口,只有一个onResourceReleased(Key key, EngineResource<?> resource)方法,Engine实现了该接口,此处的listener就是Engine。在Engine.onResourceReleased方法中会判断资源是否可缓存,可缓存则将此资源放入memory cache中,否则回收掉该资源,代码如下:
public synchronized void onResourceReleased(Key cacheKey, EngineResource<?> resource) { // 从activeResources中移除 activeResources.deactivate(cacheKey); if (resource.isCacheable()) { // 存入 MemoryCache cache.put(cacheKey, resource); } else { resourceRecycler.recycle(resource); } }
继续回到Engine.load方法,先来看下active资源获取的方法
@Nullable private EngineResource<?> loadFromActiveResources(Key key, boolean isMemoryCacheable) { // 设置skipMemoryCache(true),则isMemoryCacheable为false,跳过ActiveResources if (!isMemoryCacheable) { return null; } EngineResource<?> active = activeResources.get(key); if (active != null) { // 命中缓存,引用计数+1 active.acquire(); } return active; }
继续分析cached资源获取的方法,如果从active资源中没有获取到缓存,则继续从内存缓存中查找
private EngineResource<?> loadFromCache(Key key, boolean isMemoryCacheable) { // 设置skipMemoryCache(true),则isMemoryCacheable为false,跳过ActiveResources if (!isMemoryCacheable) { return null; } EngineResource<?> cached = getEngineResourceFromCache(key); if (cached != null) { // 命中缓存,引用计数+1 cached.acquire(); // 将此资源从memoryCache中移到activeResources中 activeResources.activate(key, cached); } return cached; }
如果从memoryCache中获取到资源则将此资源从memoryCache中移到activeResources中。第一次加载的时候activeResources和memoryCache中都没有缓存的,后面继续通过DecodeJob和EngineJob去加载资源。DecoceJob实现了Runnable接口,然后会被EngineJob.start方法提交到对应的线程池中去执行。在DecoceJob的run方法中,会依次从ResourceCacheGenerator和DataCacheGenerator中去取缓存数据,当这两者都取不到的情况下,会交给SourceGenerator加载网络图片或者本地资源。resource资源和data资源都是磁盘缓存中的资源。
先看下 ResourceCacheGenerator.startNext
@Override public boolean startNext() { // list里面只有一个GlideUrl对象 List<Key> sourceIds = helper.getCacheKeys(); if (sourceIds.isEmpty()) { return false; } // 获得了三个可以到达的registeredResourceClasses // GifDrawable、Bitmap、BitmapDrawable List<Class<?>> resourceClasses = helper.getRegisteredResourceClasses(); if (resourceClasses.isEmpty()) { if (File.class.equals(helper.getTranscodeClass())) { return false; } throw new IllegalStateException( "Failed to find any load path from " + helper.getModelClass() + " to " + helper.getTranscodeClass()); } // 遍历sourceIds中的每一个key、resourceClasses中每一个class,以及其他的一些值组成key // 尝试在磁盘缓存中以key找到缓存文件 while (modelLoaders == null || !hasNextModelLoader()) { resourceClassIndex++; if (resourceClassIndex >= resourceClasses.size()) { sourceIdIndex++; if (sourceIdIndex >= sourceIds.size()) { return false; } resourceClassIndex = 0; } Key sourceId = sourceIds.get(sourceIdIndex); Class<?> resourceClass = resourceClasses.get(resourceClassIndex); Transformation<?> transformation = helper.getTransformation(resourceClass); // PMD.AvoidInstantiatingObjectsInLoops Each iteration is comparatively expensive anyway, // we only run until the first one succeeds, the loop runs for only a limited // number of iterations on the order of 10-20 in the worst case. // 构造key currentKey = new ResourceCacheKey(// NOPMD AvoidInstantiatingObjectsInLoops helper.getArrayPool(), sourceId, helper.getSignature(), helper.getWidth(), helper.getHeight(), transformation, resourceClass, helper.getOptions()); // 查找缓存文件 cacheFile = helper.getDiskCache().get(currentKey); // 如果找到了缓存文件,循环条件则会为false,退出循环 if (cacheFile != null) { sourceKey = sourceId; // 1. 找出注入时以File.class为modelClass的注入代码 // 2. 调用所有注入的factory.build方法得到ModelLoader // 3 .过滤掉不可能处理model的ModelLoader // 此时的modelLoaders值为: // [ByteBufferFileLoader, FileLoader, FileLoader, UnitModelLoader] modelLoaders = helper.getModelLoaders(cacheFile); modelLoaderIndex = 0; } } // 如果找到了缓存文件,hasNextModelLoader()方法则会为true,可以执行循环 // 没有找到缓存文件,则不会进入循环,会直接返回false loadData = null; boolean started = false; while (!started && hasNextModelLoader()) { ModelLoader<File, ?> modelLoader = modelLoaders.get(modelLoaderIndex++); // 在循环中会依次判断某个ModelLoader能不能加载此文件 loadData = modelLoader.buildLoadData(cacheFile, helper.getWidth(), helper.getHeight(), helper.getOptions()); if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) { started = true; // 如果某个ModelLoader可以,那么就调用其fetcher进行加载数据
// 加载成功或失败会通知自身 loadData.fetcher.loadData(helper.getPriority(), this); } } return started; }
该方法的相关注释代码里都有标明。找缓存时key的类型为ResourceCacheKey,我们先来看下ResourceCacheKey的构成
currentKey = new ResourceCacheKey(// NOPMD AvoidInstantiatingObjectsInLoops helper.getArrayPool(), sourceId, helper.getSignature(), helper.getWidth(), helper.getHeight(), transformation, resourceClass, helper.getOptions()); ResourceCacheKey( ArrayPool arrayPool, Key sourceKey, Key signature, int width, int height, Transformation<?> appliedTransformation, Class<?> decodedResourceClass, Options options)arrayPool:默认值是LruArrayPool,不参与key的equals方法; sourceKey:如果请求的是URL,此处就是GlideUrl(GlideUrl implements Key); signature:BaseRequestOptions的成员变量,默认会是EmptySignature.obtain(), 在加载本地resource资源时会变成ApplicationVersionSignature.obtain(context); width、height:如果没有指定override(int size),那么将得到view的size; appliedTransformation:默认会根据ImageView的scaleType设置对应的BitmapTransformation; 如果指定了transform,那么就会是指定的值; decodedResourceClass:可以被编码成的资源类型,如BitmapDrawable等; options:如果没有设置过transform,此处会根据ImageView的scaleType默认指定一个option;
在ResourceCacheKey中,arrayPool并没有参与equals方法;
生成ResourceCacheKey之后会根据key去磁盘缓存中查找cacheFile = helper.getDiskCache().get(currentKey);
helper.getDiskCache()返回DiskCache接口,它的实现类是DiskLruCacheWrapper,看下DiskLruCacheWrapper.get方法
@Override public File get(Key key) { String safeKey = safeKeyGenerator.getSafeKey(key); ... File result = null; try { final DiskLruCache.Value value = getDiskCache().get(safeKey); if (value != null) { result = value.getFile(0); } } catch (IOException e) { ... } return result; }
这里调用SafeKeyGenerator生成了一个String类型的SafeKey,实际上就是对原始key中每个字段都使用SHA-256加密,然后将得到的字节数组转换为16进制的字符串。生成SafeKey后,接着根据SafeKey去DiskCache里面找对应的缓存文件,然后返回文件。
回到ResourceCacheGenerator.startNext方法中,如果找到了缓存会调用loadData.fetcher.loadData(helper.getPriority(), this);这里的 fetcher 是 ByteBufferFetcher,ByteBufferFetcher的loadData方法中最终会执行callback.onDataReady(result)这里callback是ResourceCacheGenerator
public void onDataReady(Object data) { cb.onDataFetcherReady(sourceKey, data, loadData.fetcher, DataSource.RESOURCE_DISK_CACHE, currentKey); }
ResourceCacheGenerator的onDataReady方法又会回调DecodeJob的onDataFetcherReady方法进行后续的解码操作。
如果ResourceCacheGenerator没有找到缓存,就会交给DataCacheGenerator继续查找缓存。该类大体流程和ResourceCacheGenerator一样,有点不同的是,DataCacheGenerator的构造器有两个构造器,其中的DataCacheGenerator(List , DecodeHelper<?>, FetcherReadyCallback)构造器是给SourceGenerator准备的。因为如果没有磁盘缓存,那么从源头加载后,肯定需要进行磁盘缓存操作的。所以,SourceGenerator会将加载后的资源保存到磁盘中,然后转交给DataCacheGenerator从磁盘中取出交给ImageView展示。
看下DataCacheGenerator.startNext
public boolean startNext() { while (modelLoaders == null || !hasNextModelLoader()) { sourceIdIndex++; if (sourceIdIndex >= cacheKeys.size()) { return false; } Key sourceId = cacheKeys.get(sourceIdIndex); ... Key originalKey = new DataCacheKey(sourceId, helper.getSignature()); cacheFile = helper.getDiskCache().get(originalKey); ... while (!started && hasNextModelLoader()) { ModelLoader<File, ?> modelLoader = modelLoaders.get(modelLoaderIndex++); loadData = modelLoader.buildLoadData(cacheFile, helper.getWidth(), helper.getHeight(), helper.getOptions()); if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) { started = true; loadData.fetcher.loadData(helper.getPriority(), this); } } return started; }
这里的originalKey是DataCacheKey类型的,DataCacheKey构造方法如下
DataCacheKey(Key sourceKey, Key signature)
这里的sourceKey和signature与ResourceCacheKey中的两个变量一致,从这里就可以看出:DataCache缓存的是原始的数据,ResourceCache缓存的是是被解码、转换后的数据。
如果DataCacheGenerator没有取到缓存,那么会交给SourceGenerator从源头加载。看下SourceGenerator的startNext方法
@Override public boolean startNext() { // 首次运行dataToCache为null if (dataToCache != null) { Object data = dataToCache; dataToCache = null; cacheData(data); } // 首次运行sourceCacheGenerator为null if (sourceCacheGenerator != null && sourceCacheGenerator.startNext()) { return true; } sourceCacheGenerator = null; loadData = null; boolean started = false; while (!started && hasNextModelLoader()) { loadData = helper.getLoadData().get(loadDataListIndex++); if (loadData != null && (helper.getDiskCacheStrategy().isDataCacheable(loadData.fetcher.getDataSource()) || helper.hasLoadPath(loadData.fetcher.getDataClass()))) { started = true; loadData.fetcher.loadData(helper.getPriority(), this); } } return started; }
加载成功后依然会回调SourceGenerator的onDataReady方法
@Override public void onDataReady(Object data) { DiskCacheStrategy diskCacheStrategy = helper.getDiskCacheStrategy(); if (data != null && diskCacheStrategy.isDataCacheable(loadData.fetcher.getDataSource())) { dataToCache = data; // cb 为 DecodeJob cb.reschedule(); } else { // cb 为 DecodeJob cb.onDataFetcherReady(loadData.sourceKey, data, loadData.fetcher, loadData.fetcher.getDataSource(), originalKey); } }
先判断获取到的数据是否需要进行磁盘缓存,如果需要磁盘缓存,则经过DecodeJob、EngineJob的调度,重新调用SourceGenerator.startNext方法,此时dataToCache已经被赋值,则会调用cacheData(data);进行磁盘缓存的写入,并转交给DataCacheGenerator完成后续的处理;否则就通知DecodeJob已经加载成功。
先看下SourceGenerator的startNext方法中调用的SourceGenerator.cacheData(data)
private void cacheData(Object dataToCache) { long startTime = LogTime.getLogTime(); try { Encoder<Object> encoder = helper.getSourceEncoder(dataToCache); DataCacheWriter<Object> writer = new DataCacheWriter<>(encoder, dataToCache, helper.getOptions()); originalKey = new DataCacheKey(loadData.sourceKey, helper.getSignature()); helper.getDiskCache().put(originalKey, writer); ... } finally { loadData.fetcher.cleanup(); } sourceCacheGenerator = new DataCacheGenerator(Collections.singletonList(loadData.sourceKey), helper, this); }
cacheData方法先构建了一个DataCacheKey将data写入了磁盘,然后new了一个DataCacheGenerator赋值给sourceCacheGenerator。回到startNext继续向下执行,此时sourceCacheGenerator不为空,就调用其startNext()方法从磁盘中加载刚写入磁盘的数据,并返回true让DecodeJob停止尝试获取数据。此时,从磁盘缓存中读取数据的逻辑已经完成,接下来是写磁盘缓存。
假如SourceGenerator的onDataReady方法中的磁盘缓存策略不可用,则会回调DecodeJob.onDataFetcherReady方法
// DecodeJob @Override public void onDataFetcherReady(Key sourceKey, Object data, DataFetcher<?> fetcher, DataSource dataSource, Key attemptedKey) { this.currentSourceKey = sourceKey; this.currentData = data; this.currentFetcher = fetcher; this.currentDataSource = dataSource; this.currentAttemptingKey = attemptedKey; if (Thread.currentThread() != currentThread) { runReason = RunReason.DECODE_DATA; callback.reschedule(this); } else { GlideTrace.beginSection("DecodeJob.decodeFromRetrievedData"); try { decodeFromRetrievedData(); } finally { GlideTrace.endSection(); } } } private void decodeFromRetrievedData() { ... Resource<R> resource = null; try { resource = decodeFromData(currentFetcher, currentData, currentDataSource); } catch (GlideException e) { e.setLoggingDetails(currentAttemptingKey, currentDataSource); throwables.add(e); } if (resource != null) { notifyEncodeAndRelease(resource, currentDataSource); } else { runGenerators(); } }
decodeFromRetrievedData();后续的方法调用链在之前的文章中分析过,主要做的事情就是:将原始的data数据转变为可以供ImageView显示的resource数据并将其显示在ImageView上。
将原始的data数据转变为resource数据后,会调用DecodeJob.onResourceDecoded(dataSource, decoded)
@Synthetic @NonNull <Z> Resource<Z> onResourceDecoded(DataSource dataSource, @NonNull Resource<Z> decoded) { @SuppressWarnings("unchecked") Class<Z> resourceSubClass = (Class<Z>) decoded.get().getClass(); Transformation<Z> appliedTransformation = null; Resource<Z> transformed = decoded; // 不是 resource cache时要transform if (dataSource != DataSource.RESOURCE_DISK_CACHE) { appliedTransformation = decodeHelper.getTransformation(resourceSubClass); transformed = appliedTransformation.transform(glideContext, decoded, width, height); } // TODO: Make this the responsibility of the Transformation. if (!decoded.equals(transformed)) { decoded.recycle(); } final EncodeStrategy encodeStrategy; final ResourceEncoder<Z> encoder; if (decodeHelper.isResourceEncoderAvailable(transformed)) { encoder = decodeHelper.getResultEncoder(transformed); encodeStrategy = encoder.getEncodeStrategy(options); } else { encoder = null; encodeStrategy = EncodeStrategy.NONE; } Resource<Z> result = transformed; boolean isFromAlternateCacheKey = !decodeHelper.isSourceKey(currentSourceKey); if (diskCacheStrategy.isResourceCacheable(isFromAlternateCacheKey, dataSource, encodeStrategy)) { if (encoder == null) { throw new Registry.NoResultEncoderAvailableException(transformed.get().getClass()); } final Key key; switch (encodeStrategy) { case SOURCE: key = new DataCacheKey(currentSourceKey, signature); break; case TRANSFORMED: key = new ResourceCacheKey( decodeHelper.getArrayPool(), currentSourceKey, signature, width, height, appliedTransformation, resourceSubClass, options); break; default: throw new IllegalArgumentException("Unknown strategy: " + encodeStrategy); } LockedResource<Z> lockedResult = LockedResource.obtain(transformed); deferredEncodeManager.init(key, encoder, lockedResult); result = lockedResult; } return result; }
然后是此过程中的磁盘缓存过程,影响的因素有encodeStrategy、DiskCacheStrategy.isResourceCacheable。encodeStrategy根据resource数据的类型来判断,如果是Bitmap或BitmapDrawable,那么就是TRANSFORMED;如果是GifDrawable,那么就是SOURCE。磁盘缓存策略默认是DiskCacheStrategy.AUTOMATIC。源码如下:
public static final DiskCacheStrategy AUTOMATIC = new DiskCacheStrategy() { public boolean isDataCacheable(DataSource dataSource) { return dataSource == DataSource.REMOTE; } public boolean isResourceCacheable(boolean isFromAlternateCacheKey, DataSource dataSource, EncodeStrategy encodeStrategy) { return (isFromAlternateCacheKey && dataSource == DataSource.DATA_DISK_CACHE || dataSource == DataSource.LOCAL) && encodeStrategy == EncodeStrategy.TRANSFORMED; } public boolean decodeCachedResource() { return true; } public boolean decodeCachedData() { return true; } };只有dataSource为DataSource.LOCAL且encodeStrategy为EncodeStrategy.TRANSFORMED时,才允许缓存。也就是只有本地的resource数据为Bitmap或BitmapDrawable的资源才可以缓存。 在DecodeJob.onResourceDecoded中会调用deferredEncodeManager.init(key, encoder, lockedResult);去初始化deferredEncodeManager。
在DecodeJob的decodeFromRetrievedData();中拿到resource数据后会调用notifyEncodeAndRelease(resource, currentDataSource)利用deferredEncodeManager对象进行磁盘缓存的写入;
otifyEncodeAndRelease(Resource<R> resource, DataSource dataSource) { ... // 通知回调,资源已经就绪 notifyComplete(result, dataSource); stage = Stage.ENCODE; try { if (deferredEncodeManager.hasResourceToEncode()) { deferredEncodeManager.encode(diskCacheProvider, options); } } finally { if (lockedResource != null) { lockedResource.unlock(); } } onEncodeComplete(); }
deferredEncodeManager.encode行磁盘缓存的写入
// DecodeJob private static class DeferredEncodeManager<Z> { private Key key; private ResourceEncoder<Z> encoder; private LockedResource<Z> toEncode; @Synthetic DeferredEncodeManager() { } // We just need the encoder and resource type to match, which this will enforce. @SuppressWarnings("unchecked") <X> void init(Key key, ResourceEncoder<X> encoder, LockedResource<X> toEncode) { this.key = key; this.encoder = (ResourceEncoder<Z>) encoder; this.toEncode = (LockedResource<Z>) toEncode; } void encode(DiskCacheProvider diskCacheProvider, Options options) { GlideTrace.beginSection("DecodeJob.encode"); try { // 存入磁盘缓存 diskCacheProvider.getDiskCache().put(key, new DataCacheWriter<>(encoder, toEncode, options)); } finally { toEncode.unlock(); GlideTrace.endSection(); } } boolean hasResourceToEncode() { return toEncode != null; } void clear() { key = null; encoder = null; toEncode = null; } }
diskCacheProvider.getDiskCache()获取到DiskLruCacheWrapper,并调用DiskLruCacheWrapper的put写入。DiskLruCacheWrapper在写入的时候会使用到写锁DiskCacheWriteLocker,锁对象由对象池WriteLockPool创建,写锁WriteLock实现是一个不公平锁ReentrantLock。
在缓存写入前,会判断key对应的value存不存在,若存在则不写入。缓存的真正写入会由DataCacheWriter交给ByteBufferEncoder和StreamEncoder两个具体类来写入,前者负责将ByteBuffer写入到文件,后者负责将InputStream写入到文件。
目前为止,磁盘缓存的读写流程都已分析完成;
5、内存缓存:ActiveResource与MemoryCache读取
回到DecodeJob.notifyEncodeAndRelease方法中,经过notifyComplete、EngineJob.onResourceReady、notifyCallbacksOfResult方法中。
在该方法中一方面会将原始的resource包装成一个EngineResource,然后通过回调传给Engine.onEngineJobComplete
@Override public synchronized void onEngineJobComplete( EngineJob<?> engineJob, Key key, EngineResource<?> resource) { // 设置资源的回调为自己,这样在资源释放时会通知自己的回调方法 if (resource != null) { resource.setResourceListener(key, this); // 将资源放入activeResources中,资源变为active状态 if (resource.isCacheable()) { activeResources.activate(key, resource); } } // 将engineJob从Jobs中移除 jobs.removeIfCurrent(key, engineJob); }
在这里会将资源放入activeResources中,资源变为active状态。后面会使用Executors.mainThreadExecutor()调用SingleRequest.onResourceReady回调进行资源的显示。在触发回调前后各有一个地方会对engineResource进行acquire()和release()操作,这两个操作分别发生在notifyCallbacksOfResult()方法的incrementPendingCallbacks、decrementPendingCallbacks()调用中
@Synthetic void notifyCallbacksOfResult() { ResourceCallbacksAndExecutors copy; Key localKey; EngineResource<?> localResource; synchronized (this) { ... engineResource = engineResourceFactory.build(resource, isCacheable); ... hasResource = true; copy = cbs.copy(); incrementPendingCallbacks(copy.size() + 1); localKey = key; localResource = engineResource; } listener.onEngineJobComplete(this, localKey, localResource); for (final ResourceCallbackAndExecutor entry : copy) { entry.executor.execute(new CallResourceReady(entry.cb)); } decrementPendingCallbacks(); } synchronized void incrementPendingCallbacks(int count) { ... if (pendingCallbacks.getAndAdd(count) == 0 && engineResource != null) { engineResource.acquire(); } } synchronized void decrementPendingCallbacks() { ... int decremented = pendingCallbacks.decrementAndGet(); if (decremented == 0) { if (engineResource != null) { engineResource.release(); } release(); } } private class CallResourceReady implements Runnable { private final ResourceCallback cb; CallResourceReady(ResourceCallback cb) { this.cb = cb; } @Override public void run() { synchronized (EngineJob.this) { if (cbs.contains(cb)) { // Acquire for this particular callback. engineResource.acquire(); callCallbackOnResourceReady(cb); removeCallback(cb); } decrementPendingCallbacks(); } } }
CallResourceReady的run方法中也会调用engineResource.acquire(),上面的代码调用结束后,engineResource的引用计数为1。engineResource的引用计数会在RequestManager.onDestory方法中最终调用SingleRequest.clear()方法,SingleRequest.clear()内部调用releaseResource()、Engine.release 进行释放,这样引用计数就变为0。引用计数就变为0后会通知Engine将此资源从active状态变成memory cache状态。如果我们再次加载资源时可以从memory cache中加载,那么资源又会从memory cache状态变成active状态。也就是说,在资源第一次显示后,我们关闭页面,资源会由active变成memory cache;然后我们再次进入页面,加载时会命中memory cache,从而又变成active状态
总结
读取内存缓存时,先从LruCache算法机制的内存缓存读取,再从弱引用机制的内存缓存读取; 写入内存缓存时,先写入 弱引用机制 的内存缓存,等到图片不再被使用时,再写入到 LruCache算法机制的内存缓存; 读取磁盘缓存时,先读取转换后图片的缓存,再读取原始图片的缓存;查看更多关于Android源码进阶之Glide缓存机制原理详解的详细内容...