好得很程序员自学网

<tfoot draggable='sEl'></tfoot>

kaggle | 商城客户细分数据

无聊看下kaggle,发现了一个不错 的数据集 您有超市购物中心和会员卡,您可以获得有关客户的一些基本数据,如客户ID,年龄,性别,年收入和支出分数。消费分数是您根据定义的参数(如客户行为和购买数据)分配给客户的分数。 问题陈述 您拥有购物中心并希望了解哪些客户可以轻松融合目标客户,以便可以向营销团队提供意见并相应地制定策略

数据集是要根据最后两个特征,来判断是否给会员卡,在生活挺常见的,典型的无监督学习,用k-means他们分类

 import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import os
print(os.listdir("input"))
['Mall_Customers.csv']
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import warnings
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
warnings.filterwarnings('ignore')
data=pd.read_csv('input/Mall_Customers.csv')
data.head() 

 X=data.iloc[:,[3,4]].values # 将年度收入和支出分数作为特征 

求最优聚类数

 from sklearn.cluster import KMeans
wcss=[]
for i in range(1,11):
    kmeans=KMeans(n_clusters=i,init='k-means++',max_iter=300,n_init=10,random_state=0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
plt.plot(range(1,11),wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show() 

看出就是5,因为5是折点

 kmeans=KMeans(n_clusters=5,init='k-means++',max_iter=300,n_init=10,random_state=0)
y_kmeans=kmeans.fit_predict(X) 

 plt.scatter(X[y_kmeans==0,0],X[y_kmeans==0,1],s=100,c='magenta',label='Careful')
plt.scatter(X[y_kmeans==1,0],X[y_kmeans==1,1],s=100,c='yellow',label='Standard')
plt.scatter(X[y_kmeans==2,0],X[y_kmeans==2,1],s=100,c='green',label='Target')
plt.scatter(X[y_kmeans==3,0],X[y_kmeans==3,1],s=100,c='cyan',label='Careless')
plt.scatter(X[y_kmeans==4,0],X[y_kmeans==4,1],s=100,c='burlywood',label='Sensible')
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=300,c='red',label='Centroids')
plt.title('Cluster of Clients')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show 

五个分类

 Cluster 1- High income low spending =Careful

Cluster 2- Medium income medium spending =Standard

Cluster 3- High Income and high spending =Target

Cluster 4- Low Income and high spending =Careless

Cluster 5- Low Income and low spending =Sensible 

比较男和女

 sns.lmplot(x='Age', y='Spending Score (1-100)', data=data,fit_reg=True,hue='Gender')
plt.show() 

年龄分布

 data.sort_values(['Age'])
plt.figure(figsize=(10,8))
plt.bar(data['Age'],data['Spending Score (1-100)'])
plt.xlabel('Age')
plt.ylabel('Spending Score')
plt.show() 

男人和女人花在20多岁和30多岁的时候,因为在以后的阶段,消费变小了。 男变为1,女0

 label_encoder=LabelEncoder()
integer_encoded=label_encoder.fit_transform(data.iloc[:,1].values)
data['Gender']=integer_encoded
data.head() 

 hm=sns.heatmap(data.iloc[:,1:5].corr(), annot = True, linewidths=.5, cmap='Blues')
hm.set_title(label='Heatmap of dataset', fontsize=20)
hm
plt.ioff() 

看了下其他人的代码,学习一下 有人分成3类

 dataset_1 = data.iloc[:,1:5]
dataset_1.head(10) 

 results = []
for i in range(1,10):
    kmeans = KMeans(n_clusters=i, init='k-means++')
    res = kmeans.fit(dataset_1)
    results.append(res.score(dataset_1))
plt.plot(range(1,10),results)
plt.xlabel('Num Clusters')
plt.ylabel('score')
plt.title('Elbow Curve') 

应该是无关数据影响了

 dataset_2 = dataset[:,3:5]
dataset_2.head(10) 

 results = []
for i in range(1,10):
    kmeans = KMeans(n_clusters=i, init='k-means++')
    res = kmeans.fit(dataset_2)
    results.append(res.score(dataset_2))
plt.plot(range(1,10),results)
plt.xlabel('Num Clusters')
plt.ylabel('score')
plt.title('Elbow Curve') 

数据集链接: https://www.kaggle.com/vjchoudhary7/customer-segmentation-tutorial-in-python

查看更多关于kaggle | 商城客户细分数据的详细内容...

  阅读:39次