一开始看错题了。。sad。
题目很简单,做法也很简单。DP一下就好了。
dp[i][0]:到当前位置,没有任何数改变,得到的长度。
dp[i][1]:到当前位置,改变了一个数,得到的长度
不过需要正向求一遍,然后反向求一遍。
#include #include #include#include #include using namespace std;#define maxn 110000int dp[maxn][3];int num[maxn];int a[maxn];int n;void dos(int maxx){ memset(dp,0,sizeof(dp)); memset(num,-1,sizeof(num)); for(int i=n; i>=1; i--) { if(a[i]=a[i+1]) { if(dp[i][1] a[i-1]) { dp[i][0]=dp[i-1][0]+1; } else { dp[i][0]=1; } dp[i][1]=dp[i][0]; num[i]=a[i]; if(a[i]>num[i-1]) { if(dp[i][1]B:DZY Loves Modification
我们可以发现选择一个横行,竖行的大小顺序不变,只是每一个竖行都下降了p。
所以我们可以枚举选择了x个横行,y个竖行。
#include #include #include#include #include #include using namespace std;#define maxn 1100#define LL __int64int mp[maxn][maxn];int hh[maxn];int ll[maxn];LL ph[1100000];LL pl[1100000];priority_queue que;int n,m,k,p;void chu(){ ph[0]=pl[0]=0; while(!que.empty())que.pop(); for(int i=1;i主要是两个性质:
1,两个斐波那契数列相加依然是一个斐波那契数列。
2,根据斐波那契数列的前两项可以O(1)的时间内得出任意一个位置的斐波那契数,和任意长度的斐波那契数列的合。
剩下的东西就是简单的区间求和问题了。
#include #include #include #include #include#include #include #include #pragma comment(linker, "/STACK:1024000000,1024000000")using namespace std;#define mem(a,b) (memset(a),b,sizeof(a))#define lmin 1#define rmax n#define lson l,(l+r)/2,rt r||rr =r) { f1[rt]+=fib[l-ll+1]; f2[rt]+=fib[l-ll+2]; sum[rt]+=suan(fib[l-ll+1],fib[l-ll+2],r-l+1); sum[rt]=(sum[rt]+mod)%mod; f1[rt]=f1[rt]%mod; f2[rt]=f2[rt]%mod; return; } push_down(now); updata(ll,rr,lson); updata(ll,rr,rson); push_up(now);}LL query(int ll,int rr,int_now){ if(ll>r||rr =r)return sum[rt]; push_down(now); return (query(ll,rr,rson)+query(ll,rr,lson))%mod;}int main(){ fib[1]=1;fib[2]=1; for(int i=3;i查看更多关于CodeforcesRound#FF(Div.1)-A,B,C_html/css_WEB-ITnos的详细内容...
声明:本文来自网络,不代表【好得很程序员自学网】立场,转载请注明出处:http://www.haodehen.cn/did105337